Introduction to Global Variational Geometry

Introduction to Global Variational Geometry
Author :
Publisher : Springer
Total Pages : 366
Release :
ISBN-10 : 9789462390737
ISBN-13 : 9462390738
Rating : 4/5 (37 Downloads)

Synopsis Introduction to Global Variational Geometry by : Demeter Krupka

The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational sequence theory and its consequences for the global inverse problem (cohomology conditions)- examples of variational functionals of mathematical physics. Complete formulations and proofs of all basic assertions are given, based on theorems of global analysis explained in the Appendix.

Variational Analysis

Variational Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 747
Release :
ISBN-10 : 9783642024313
ISBN-13 : 3642024319
Rating : 4/5 (13 Downloads)

Synopsis Variational Analysis by : R. Tyrrell Rockafellar

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Tensors, Differential Forms, and Variational Principles

Tensors, Differential Forms, and Variational Principles
Author :
Publisher : Courier Corporation
Total Pages : 402
Release :
ISBN-10 : 9780486131986
ISBN-13 : 048613198X
Rating : 4/5 (86 Downloads)

Synopsis Tensors, Differential Forms, and Variational Principles by : David Lovelock

Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.

Interpolation Theory - Function Spaces - Differential Operators

Interpolation Theory - Function Spaces - Differential Operators
Author :
Publisher : Wiley-VCH
Total Pages : 0
Release :
ISBN-10 : 3527402683
ISBN-13 : 9783527402687
Rating : 4/5 (83 Downloads)

Synopsis Interpolation Theory - Function Spaces - Differential Operators by : Hans Triebel

Interpolation Theory • Function Spaces • Differential Operators contains a systematic treatment in the following topics: Interpolation theory in Banach spaces Theory of the Besov and (fractional) Sobolev spaces without and with weights in Rn, R+n, and in domains Theory of regular and degenerate elliptic differential operators Structure theory of special nuclear function spaces. It is the aim of the present book to treat these topics from the common point of view of interpolation theory. The second edition now presented contains major changes of formulations and proofs and, finally, an appendix, dealing with recent developments and related references. The book is written for graduate students and research mathematicians, interested in abstract functional analysis and its applications to function spaces and differential operators.

An Introduction to the Calculus of Variations

An Introduction to the Calculus of Variations
Author :
Publisher : Courier Corporation
Total Pages : 358
Release :
ISBN-10 : 9780486165950
ISBN-13 : 0486165957
Rating : 4/5 (50 Downloads)

Synopsis An Introduction to the Calculus of Variations by : L.A. Pars

Clear, rigorous introductory treatment covers applications to geometry, dynamics, and physics. It focuses upon problems with one independent variable, connecting abstract theory with its use in concrete problems. 1962 edition.

Sets of Finite Perimeter and Geometric Variational Problems

Sets of Finite Perimeter and Geometric Variational Problems
Author :
Publisher : Cambridge University Press
Total Pages : 475
Release :
ISBN-10 : 9781107021037
ISBN-13 : 1107021030
Rating : 4/5 (37 Downloads)

Synopsis Sets of Finite Perimeter and Geometric Variational Problems by : Francesco Maggi

An engaging graduate-level introduction that bridges analysis and geometry. Suitable for self-study and a useful reference for researchers.

Introduction to Differential Geometry

Introduction to Differential Geometry
Author :
Publisher : Springer Nature
Total Pages : 426
Release :
ISBN-10 : 9783662643402
ISBN-13 : 3662643405
Rating : 4/5 (02 Downloads)

Synopsis Introduction to Differential Geometry by : Joel W. Robbin

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Cartan Geometries and their Symmetries

Cartan Geometries and their Symmetries
Author :
Publisher : Springer
Total Pages : 298
Release :
ISBN-10 : 9789462391925
ISBN-13 : 9462391920
Rating : 4/5 (25 Downloads)

Synopsis Cartan Geometries and their Symmetries by : Mike Crampin

In this book we first review the ideas of Lie groupoid and Lie algebroid, and the associated concepts of connection. We next consider Lie groupoids of fibre morphisms of a fibre bundle, and the connections on such groupoids together with their symmetries. We also see how the infinitesimal approach, using Lie algebroids rather than Lie groupoids, and in particular using Lie algebroids of vector fields along the projection of the fibre bundle, may be of benefit. We then introduce Cartan geometries, together with a number of tools we shall use to study them. We take, as particular examples, the four classical types of geometry: affine, projective, Riemannian and conformal geometry. We also see how our approach can start to fit into a more general theory. Finally, we specialize to the geometries (affine and projective) associated with path spaces and geodesics, and consider their symmetries and other properties.

Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory
Author :
Publisher : Princeton University Press
Total Pages : 255
Release :
ISBN-10 : 9780691151878
ISBN-13 : 0691151873
Rating : 4/5 (78 Downloads)

Synopsis Calculus of Variations and Optimal Control Theory by : Daniel Liberzon

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control

The Inverse Problem of the Calculus of Variations

The Inverse Problem of the Calculus of Variations
Author :
Publisher : Springer
Total Pages : 296
Release :
ISBN-10 : 9789462391093
ISBN-13 : 9462391092
Rating : 4/5 (93 Downloads)

Synopsis The Inverse Problem of the Calculus of Variations by : Dmitry V. Zenkov

The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).