Introduction To Data Mining
Download Introduction To Data Mining full books in PDF, epub, and Kindle. Read online free Introduction To Data Mining ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Pang-Ning Tan |
Publisher |
: Pearson Education India |
Total Pages |
: 781 |
Release |
: 2016 |
ISBN-10 |
: 9789332586055 |
ISBN-13 |
: 9332586055 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Introduction to Data Mining by : Pang-Ning Tan
Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. Each major topic is organized into two chapters, beginni
Author |
: Pang-Ning Tan |
Publisher |
: |
Total Pages |
: 864 |
Release |
: 2018-04-13 |
ISBN-10 |
: 0273769227 |
ISBN-13 |
: 9780273769224 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Introduction to Data Mining by : Pang-Ning Tan
Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics. Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.
Author |
: Kris Jamsa |
Publisher |
: Jones & Bartlett Learning |
Total Pages |
: 687 |
Release |
: 2020-02-03 |
ISBN-10 |
: 9781284210484 |
ISBN-13 |
: 1284210480 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Introduction to Data Mining and Analytics by : Kris Jamsa
Data Mining and Analytics provides a broad and interactive overview of a rapidly growing field. The exponentially increasing rate at which data is generated creates a corresponding need for professionals who can effectively handle its storage, analysis, and translation.
Author |
: S. Sumathi |
Publisher |
: Springer |
Total Pages |
: 836 |
Release |
: 2006-10-12 |
ISBN-10 |
: 9783540343516 |
ISBN-13 |
: 3540343512 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Introduction to Data Mining and its Applications by : S. Sumathi
This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in database systems, and presents a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, artificial intelligence, machine learning, neural networks, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization.
Author |
: Jiawei Han |
Publisher |
: Elsevier |
Total Pages |
: 740 |
Release |
: 2011-06-09 |
ISBN-10 |
: 9780123814807 |
ISBN-13 |
: 0123814804 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Data Mining: Concepts and Techniques by : Jiawei Han
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Author |
: Daniel T. Larose |
Publisher |
: John Wiley & Sons |
Total Pages |
: 240 |
Release |
: 2005-01-28 |
ISBN-10 |
: 9780471687535 |
ISBN-13 |
: 0471687537 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Discovering Knowledge in Data by : Daniel T. Larose
Learn Data Mining by doing data mining Data mining can be revolutionary-but only when it's done right. The powerful black box data mining software now available can produce disastrously misleading results unless applied by a skilled and knowledgeable analyst. Discovering Knowledge in Data: An Introduction to Data Mining provides both the practical experience and the theoretical insight needed to reveal valuable information hidden in large data sets. Employing a "white box" methodology and with real-world case studies, this step-by-step guide walks readers through the various algorithms and statistical structures that underlie the software and presents examples of their operation on actual large data sets. Principal topics include: * Data preprocessing and classification * Exploratory analysis * Decision trees * Neural and Kohonen networks * Hierarchical and k-means clustering * Association rules * Model evaluation techniques Complete with scores of screenshots and diagrams to encourage graphical learning, Discovering Knowledge in Data: An Introduction to Data Mining gives students in Business, Computer Science, and Statistics as well as professionals in the field the power to turn any data warehouse into actionable knowledge. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.
Author |
: Xin-She Yang |
Publisher |
: Academic Press |
Total Pages |
: 190 |
Release |
: 2019-06-17 |
ISBN-10 |
: 9780128172179 |
ISBN-13 |
: 0128172177 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Introduction to Algorithms for Data Mining and Machine Learning by : Xin-She Yang
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages
Author |
: Jason T. L. Wang |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 356 |
Release |
: 2005 |
ISBN-10 |
: 1852336714 |
ISBN-13 |
: 9781852336714 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Data Mining in Bioinformatics by : Jason T. L. Wang
Written especially for computer scientists, all necessary biology is explained. Presents new techniques on gene expression data mining, gene mapping for disease detection, and phylogenetic knowledge discovery.
Author |
: Margaret H Dunham |
Publisher |
: Pearson Education India |
Total Pages |
: 332 |
Release |
: 2006-09 |
ISBN-10 |
: 8177587854 |
ISBN-13 |
: 9788177587852 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Data Mining: Introductory And Advanced Topics by : Margaret H Dunham
Author |
: David Louis Olson |
Publisher |
: |
Total Pages |
: 273 |
Release |
: 2007 |
ISBN-10 |
: 1283384434 |
ISBN-13 |
: 9781283384438 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Introduction to Business Data Mining by : David Louis Olson