Classical and Quantum Computation

Classical and Quantum Computation
Author :
Publisher : American Mathematical Soc.
Total Pages : 274
Release :
ISBN-10 : 9780821832295
ISBN-13 : 0821832298
Rating : 4/5 (95 Downloads)

Synopsis Classical and Quantum Computation by : Alexei Yu. Kitaev

An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.

Quantum Computing

Quantum Computing
Author :
Publisher : MIT Press
Total Pages : 389
Release :
ISBN-10 : 9780262015066
ISBN-13 : 0262015064
Rating : 4/5 (66 Downloads)

Synopsis Quantum Computing by : Eleanor G. Rieffel

A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples.

An Introduction to Quantum Computing

An Introduction to Quantum Computing
Author :
Publisher : Oxford University Press
Total Pages : 287
Release :
ISBN-10 : 9780198570004
ISBN-13 : 0198570007
Rating : 4/5 (04 Downloads)

Synopsis An Introduction to Quantum Computing by : Phillip Kaye

The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises.

Introduction to Quantum Computing

Introduction to Quantum Computing
Author :
Publisher : Springer Nature
Total Pages : 369
Release :
ISBN-10 : 9783030693183
ISBN-13 : 303069318X
Rating : 4/5 (83 Downloads)

Synopsis Introduction to Quantum Computing by : Ray LaPierre

This book provides a self-contained undergraduate course on quantum computing based on classroom-tested lecture notes. It reviews the fundamentals of quantum mechanics from the double-slit experiment to entanglement, before progressing to the basics of qubits, quantum gates, quantum circuits, quantum key distribution, and some of the famous quantum algorithms. As well as covering quantum gates in depth, it also describes promising platforms for their physical implementation, along with error correction, and topological quantum computing. With quantum computing expanding rapidly in the private sector, understanding quantum computing has never been so important for graduates entering the workplace or PhD programs. Assuming minimal background knowledge, this book is highly accessible, with rigorous step-by-step explanations of the principles behind quantum computation, further reading, and end-of-chapter exercises, ensuring that undergraduate students in physics and engineering emerge well prepared for the future.

Quantum Computing for Everyone

Quantum Computing for Everyone
Author :
Publisher : MIT Press
Total Pages : 214
Release :
ISBN-10 : 9780262039253
ISBN-13 : 0262039257
Rating : 4/5 (53 Downloads)

Synopsis Quantum Computing for Everyone by : Chris Bernhardt

An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.

Classical and Quantum Information Theory

Classical and Quantum Information Theory
Author :
Publisher : Cambridge University Press
Total Pages : 714
Release :
ISBN-10 : 9780521881715
ISBN-13 : 0521881714
Rating : 4/5 (15 Downloads)

Synopsis Classical and Quantum Information Theory by : Emmanuel Desurvire

This complete overview of classical and quantum information theory employs an informal yet accurate approach, for students, researchers and practitioners.

Classical and Quantum Computing

Classical and Quantum Computing
Author :
Publisher : Springer Science & Business Media
Total Pages : 620
Release :
ISBN-10 : 3764366109
ISBN-13 : 9783764366100
Rating : 4/5 (09 Downloads)

Synopsis Classical and Quantum Computing by : Yorick Hardy

This is a self-contained, systematic and comprehensive introduction to all the subjects and techniques important in scientific computing. The style and presentation are readily accessible to undergraduates and graduates. A large number of examples, accompanied by complete C++ and Java code wherever possible, cover every topic.

Quantum Computing for the Quantum Curious

Quantum Computing for the Quantum Curious
Author :
Publisher : Springer Nature
Total Pages : 159
Release :
ISBN-10 : 9783030616014
ISBN-13 : 3030616010
Rating : 4/5 (14 Downloads)

Synopsis Quantum Computing for the Quantum Curious by : Ciaran Hughes

This open access book makes quantum computing more accessible than ever before. A fast-growing field at the intersection of physics and computer science, quantum computing promises to have revolutionary capabilities far surpassing “classical” computation. Getting a grip on the science behind the hype can be tough: at its heart lies quantum mechanics, whose enigmatic concepts can be imposing for the novice. This classroom-tested textbook uses simple language, minimal math, and plenty of examples to explain the three key principles behind quantum computers: superposition, quantum measurement, and entanglement. It then goes on to explain how this quantum world opens up a whole new paradigm of computing. The book bridges the gap between popular science articles and advanced textbooks by making key ideas accessible with just high school physics as a prerequisite. Each unit is broken down into sections labelled by difficulty level, allowing the course to be tailored to the student’s experience of math and abstract reasoning. Problem sets and simulation-based labs of various levels reinforce the concepts described in the text and give the reader hands-on experience running quantum programs. This book can thus be used at the high school level after the AP or IB exams, in an extracurricular club, or as an independent project resource to give students a taste of what quantum computing is really about. At the college level, it can be used as a supplementary text to enhance a variety of courses in science and computing, or as a self-study guide for students who want to get ahead. Additionally, readers in business, finance, or industry will find it a quick and useful primer on the science behind computing’s future.

Quantum Computing

Quantum Computing
Author :
Publisher : National Academies Press
Total Pages : 273
Release :
ISBN-10 : 9780309479691
ISBN-13 : 030947969X
Rating : 4/5 (91 Downloads)

Synopsis Quantum Computing by : National Academies of Sciences, Engineering, and Medicine

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.