Introduction To Bayesian Statistics
Download Introduction To Bayesian Statistics full books in PDF, epub, and Kindle. Read online free Introduction To Bayesian Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: William M. Bolstad |
Publisher |
: John Wiley & Sons |
Total Pages |
: 608 |
Release |
: 2016-09-02 |
ISBN-10 |
: 9781118593226 |
ISBN-13 |
: 1118593227 |
Rating |
: 4/5 (26 Downloads) |
Synopsis Introduction to Bayesian Statistics by : William M. Bolstad
"...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.
Author |
: William M. Bolstad |
Publisher |
: John Wiley & Sons |
Total Pages |
: 353 |
Release |
: 2013-06-05 |
ISBN-10 |
: 9781118619216 |
ISBN-13 |
: 1118619218 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Introduction to Bayesian Statistics by : William M. Bolstad
Praise for the First Edition "I cannot think of a better book for teachers of introductory statistics who want a readable and pedagogically sound text to introduce Bayesian statistics." —Statistics in Medical Research "[This book] is written in a lucid conversational style, which is so rare in mathematical writings. It does an excellent job of presenting Bayesian statistics as a perfectly reasonable approach to elementary problems in statistics." —STATS: The Magazine for Students of Statistics, American Statistical Association "Bolstad offers clear explanations of every concept and method making the book accessible and valuable to undergraduate and graduate students alike." —Journal of Applied Statistics The use of Bayesian methods in applied statistical analysis has become increasingly popular, yet most introductory statistics texts continue to only present the subject using frequentist methods. Introduction to Bayesian Statistics, Second Edition focuses on Bayesian methods that can be used for inference, and it also addresses how these methods compare favorably with frequentist alternatives. Teaching statistics from the Bayesian perspective allows for direct probability statements about parameters, and this approach is now more relevant than ever due to computer programs that allow practitioners to work on problems that contain many parameters. This book uniquely covers the topics typically found in an introductory statistics book—but from a Bayesian perspective—giving readers an advantage as they enter fields where statistics is used. This Second Edition provides: Extended coverage of Poisson and Gamma distributions Two new chapters on Bayesian inference for Poisson observations and Bayesian inference for the standard deviation for normal observations A twenty-five percent increase in exercises with selected answers at the end of the book A calculus refresher appendix and a summary on the use of statistical tables New computer exercises that use R functions and Minitab® macros for Bayesian analysis and Monte Carlo simulations Introduction to Bayesian Statistics, Second Edition is an invaluable textbook for advanced undergraduate and graduate-level statistics courses as well as a practical reference for statisticians who require a working knowledge of Bayesian statistics.
Author |
: Karl-Rudolf Koch |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 258 |
Release |
: 2007-10-08 |
ISBN-10 |
: 9783540727262 |
ISBN-13 |
: 3540727264 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Introduction to Bayesian Statistics by : Karl-Rudolf Koch
This book presents Bayes’ theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters. It does so in a simple manner that is easy to comprehend. The book compares traditional and Bayesian methods with the rules of probability presented in a logical way allowing an intuitive understanding of random variables and their probability distributions to be formed.
Author |
: Richard A. Chechile |
Publisher |
: MIT Press |
Total Pages |
: 473 |
Release |
: 2020-09-08 |
ISBN-10 |
: 9780262360708 |
ISBN-13 |
: 0262360705 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Bayesian Statistics for Experimental Scientists by : Richard A. Chechile
An introduction to the Bayesian approach to statistical inference that demonstrates its superiority to orthodox frequentist statistical analysis. This book offers an introduction to the Bayesian approach to statistical inference, with a focus on nonparametric and distribution-free methods. It covers not only well-developed methods for doing Bayesian statistics but also novel tools that enable Bayesian statistical analyses for cases that previously did not have a full Bayesian solution. The book's premise is that there are fundamental problems with orthodox frequentist statistical analyses that distort the scientific process. Side-by-side comparisons of Bayesian and frequentist methods illustrate the mismatch between the needs of experimental scientists in making inferences from data and the properties of the standard tools of classical statistics.
Author |
: James V. Stone |
Publisher |
: Sebtel Press |
Total Pages |
: 184 |
Release |
: 2013-06-01 |
ISBN-10 |
: 9780956372840 |
ISBN-13 |
: 0956372848 |
Rating |
: 4/5 (40 Downloads) |
Synopsis Bayes' Rule by : James V. Stone
In this richly illustrated book, the tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for the novice who wishes to become familiar with the basic principles of Bayesian analysis.
Author |
: Will Kurt |
Publisher |
: No Starch Press |
Total Pages |
: 258 |
Release |
: 2019-07-09 |
ISBN-10 |
: 9781593279561 |
ISBN-13 |
: 1593279566 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Bayesian Statistics the Fun Way by : Will Kurt
Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.
Author |
: Jayanta K. Ghosh |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 356 |
Release |
: 2007-07-03 |
ISBN-10 |
: 9780387354330 |
ISBN-13 |
: 0387354336 |
Rating |
: 4/5 (30 Downloads) |
Synopsis An Introduction to Bayesian Analysis by : Jayanta K. Ghosh
This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be analyzed using the current techniques of statistical computing. Advances in both low-dimensional and high-dimensional problems are covered, as well as important topics such as empirical Bayes and hierarchical Bayes methods and Markov chain Monte Carlo (MCMC) techniques. Many topics are at the cutting edge of statistical research. Solutions to common inference problems appear throughout the text along with discussion of what prior to choose. There is a discussion of elicitation of a subjective prior as well as the motivation, applicability, and limitations of objective priors. By way of important applications the book presents microarrays, nonparametric regression via wavelets as well as DMA mixtures of normals, and spatial analysis with illustrations using simulated and real data. Theoretical topics at the cutting edge include high-dimensional model selection and Intrinsic Bayes Factors, which the authors have successfully applied to geological mapping. The style is informal but clear. Asymptotics is used to supplement simulation or understand some aspects of the posterior.
Author |
: Therese M. Donovan |
Publisher |
: Oxford University Press, USA |
Total Pages |
: 430 |
Release |
: 2019 |
ISBN-10 |
: 9780198841296 |
ISBN-13 |
: 0198841299 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Bayesian Statistics for Beginners by : Therese M. Donovan
This is an entry-level book on Bayesian statistics written in a casual, and conversational tone. The authors walk a reader through many sample problems step-by-step to provide those with little background in math or statistics with the vocabulary, notation, and understanding of the calculations used in many Bayesian problems.
Author |
: Andrew Gelman |
Publisher |
: CRC Press |
Total Pages |
: 677 |
Release |
: 2013-11-01 |
ISBN-10 |
: 9781439840955 |
ISBN-13 |
: 1439840954 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Author |
: Nick Heard |
Publisher |
: Springer Nature |
Total Pages |
: 177 |
Release |
: 2021-10-17 |
ISBN-10 |
: 9783030828080 |
ISBN-13 |
: 3030828085 |
Rating |
: 4/5 (80 Downloads) |
Synopsis An Introduction to Bayesian Inference, Methods and Computation by : Nick Heard
These lecture notes provide a rapid, accessible introduction to Bayesian statistical methods. The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models. These advanced modelling techniques can easily be applied using computer code samples written in Python and Stan which are integrated into the main text. Importantly, the reader will learn methods for assessing model fit, and to choose between rival modelling approaches.