Interpretability For Industry 40 Statistical And Machine Learning Approaches
Download Interpretability For Industry 40 Statistical And Machine Learning Approaches full books in PDF, epub, and Kindle. Read online free Interpretability For Industry 40 Statistical And Machine Learning Approaches ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Antonio Lepore |
Publisher |
: Springer Nature |
Total Pages |
: 130 |
Release |
: 2022-10-19 |
ISBN-10 |
: 9783031124020 |
ISBN-13 |
: 3031124022 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches by : Antonio Lepore
This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry. Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.
Author |
: Antonio Lepore |
Publisher |
: |
Total Pages |
: 0 |
Release |
: 2022 |
ISBN-10 |
: 3031124030 |
ISBN-13 |
: 9783031124037 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Interpretability for Industry 4.0 by : Antonio Lepore
This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry. Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.
Author |
: Christoph Molnar |
Publisher |
: Lulu.com |
Total Pages |
: 320 |
Release |
: 2020 |
ISBN-10 |
: 9780244768522 |
ISBN-13 |
: 0244768528 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Interpretable Machine Learning by : Christoph Molnar
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Author |
: Christopher M. Bishop |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2016-08-23 |
ISBN-10 |
: 1493938436 |
ISBN-13 |
: 9781493938438 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Pattern Recognition and Machine Learning by : Christopher M. Bishop
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Author |
: Ajay Agrawal |
Publisher |
: University of Chicago Press |
Total Pages |
: 172 |
Release |
: 2024-03-05 |
ISBN-10 |
: 9780226833125 |
ISBN-13 |
: 0226833127 |
Rating |
: 4/5 (25 Downloads) |
Synopsis The Economics of Artificial Intelligence by : Ajay Agrawal
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Author |
: Sergio Consoli |
Publisher |
: Springer Nature |
Total Pages |
: 357 |
Release |
: 2021 |
ISBN-10 |
: 9783030668914 |
ISBN-13 |
: 3030668916 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Data Science for Economics and Finance by : Sergio Consoli
This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
Author |
: Serg Masís |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 737 |
Release |
: 2021-03-26 |
ISBN-10 |
: 9781800206571 |
ISBN-13 |
: 1800206577 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Interpretable Machine Learning with Python by : Serg Masís
A deep and detailed dive into the key aspects and challenges of machine learning interpretability, complete with the know-how on how to overcome and leverage them to build fairer, safer, and more reliable models Key Features Learn how to extract easy-to-understand insights from any machine learning model Become well-versed with interpretability techniques to build fairer, safer, and more reliable models Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models Book DescriptionDo you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning. What you will learn Recognize the importance of interpretability in business Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes Become well-versed in interpreting models with model-agnostic methods Visualize how an image classifier works and what it learns Understand how to mitigate the influence of bias in datasets Discover how to make models more reliable with adversarial robustness Use monotonic constraints to make fairer and safer models Who this book is for This book is primarily written for data scientists, machine learning developers, and data stewards who find themselves under increasing pressures to explain the workings of AI systems, their impacts on decision making, and how they identify and manage bias. It’s also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a solid grasp on the Python programming language and ML fundamentals is needed to follow along.
Author |
: Daniel A. Roberts |
Publisher |
: Cambridge University Press |
Total Pages |
: 473 |
Release |
: 2022-05-26 |
ISBN-10 |
: 9781316519332 |
ISBN-13 |
: 1316519333 |
Rating |
: 4/5 (32 Downloads) |
Synopsis The Principles of Deep Learning Theory by : Daniel A. Roberts
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Author |
: Parnika Shrivastava |
Publisher |
: CRC Press |
Total Pages |
: 269 |
Release |
: 2023-12-05 |
ISBN-10 |
: 9781003803249 |
ISBN-13 |
: 1003803245 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Hybrid Metal Additive Manufacturing by : Parnika Shrivastava
The text presents the latest research and development, technical challenges, and future directions in the field of hybrid metal additive manufacturing. It further discusses the modeling of hybrid additive manufacturing processes for metals, hybrid additive manufacturing of composite materials, and low-carbon hybrid additive manufacturing processes. THIS BOOK •Presents cutting-edge advancements and limitations in hybrid additive manufacturing technologies. • Discusses fabrication methods and rapid tooling techniques focusing on metals, composites, and alloys. •Highlights the importance of low-carbon additive manufacturing technologies toward achieving sustainability. •Emphasizes the challenges and solutions for integrating additive manufacturing and Industry 4.0 to enable rapid manufacturing of customized and tailored products. • Covers hybrid additive manufacturing of composite materials and additive manufacturing for fabricating high-hardness components. The text discusses the recent advancements in additive manufacturing of high-hardness components and covers important engineering materials such as metals, alloys, and composites. It further highlights defects and post-processing of hybrid additive manufacturing components, sustainability solutions for hybrid additive manufacturing processes, and recycling of machining waste into metal powder feedstock. It will serve as an ideal reference text for senior undergraduate and graduate students, and researchers in fields including mechanical engineering, aerospace engineering, manufacturing engineering, and production engineering.
Author |
: El Bachir Boukherouaa |
Publisher |
: International Monetary Fund |
Total Pages |
: 35 |
Release |
: 2021-10-22 |
ISBN-10 |
: 9781589063952 |
ISBN-13 |
: 1589063953 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance by : El Bachir Boukherouaa
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.