Intermediate Statistics and Econometrics

Intermediate Statistics and Econometrics
Author :
Publisher : MIT Press
Total Pages : 744
Release :
ISBN-10 : 0262161494
ISBN-13 : 9780262161497
Rating : 4/5 (94 Downloads)

Synopsis Intermediate Statistics and Econometrics by : Dale J. Poirier

The standard introductory texts to mathematical statistics leave the Bayesian approach to be taught later in advanced topics courses-giving students the impression that Bayesian statistics provide but a few techniques appropriate in only special circumstances. Nothing could be further from the truth, argues Dale Poirier, who has developed a course for teaching comparatively both the classical and the Bayesian approaches to econometrics. Poirier's text provides a thoroughly modern, self-contained, comprehensive, and accessible treatment of the probability and statistical foundations of econometrics with special emphasis on the linear regression model. Written primarily for advanced undergraduate and graduate students who are pursuing research careers in economics, Intermediate Statistics and Econometrics offers a broad perspective, bringing together a great deal of diverse material. Its comparative approach, emphasis on regression and prediction, and numerous exercises and references provide a solid foundation for subsequent courses in econometrics and will prove a valuable resource to many nonspecialists who want to update their quantitative skills. The introduction closes with an example of a real-world data set-the Challengerspace shuttle disaster-that motivates much of the text's theoretical discussion. The ten chapters that follow cover basic concepts, special distributions, distributions of functions of random variables, sampling theory, estimation, hypothesis testing, prediction, and the linear regression model. Appendixes contain a review of matrix algebra, computation, and statistical tables.

Hands-on Intermediate Econometrics Using R: Templates For Extending Dozens Of Practical Examples (With Cd-rom)

Hands-on Intermediate Econometrics Using R: Templates For Extending Dozens Of Practical Examples (With Cd-rom)
Author :
Publisher : World Scientific Publishing Company
Total Pages : 540
Release :
ISBN-10 : 9789813101272
ISBN-13 : 981310127X
Rating : 4/5 (72 Downloads)

Synopsis Hands-on Intermediate Econometrics Using R: Templates For Extending Dozens Of Practical Examples (With Cd-rom) by : Hrishikesh D Vinod

This book explains how to use R software to teach econometrics by providing interesting examples, using actual data applied to important policy issues. It helps readers choose the best method from a wide array of tools and packages available. The data used in the examples along with R program snippets, illustrate the economic theory and sophisticated statistical methods extending the usual regression. The R program snippets are not merely given as black boxes, but include detailed comments which help the reader better understand the software steps and use them as templates for possible extension and modification.

Bayesian Econometric Methods

Bayesian Econometric Methods
Author :
Publisher : Cambridge University Press
Total Pages : 491
Release :
ISBN-10 : 9781108423380
ISBN-13 : 1108423388
Rating : 4/5 (80 Downloads)

Synopsis Bayesian Econometric Methods by : Joshua Chan

Illustrates Bayesian theory and application through a series of exercises in question and answer format.

Contemporary Bayesian Econometrics and Statistics

Contemporary Bayesian Econometrics and Statistics
Author :
Publisher : John Wiley & Sons
Total Pages : 322
Release :
ISBN-10 : 9780471744726
ISBN-13 : 0471744727
Rating : 4/5 (26 Downloads)

Synopsis Contemporary Bayesian Econometrics and Statistics by : John Geweke

Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.

Econometrics

Econometrics
Author :
Publisher : Princeton University Press
Total Pages : 708
Release :
ISBN-10 : 9781400823833
ISBN-13 : 1400823838
Rating : 4/5 (33 Downloads)

Synopsis Econometrics by : Fumio Hayashi

The most authoritative and comprehensive synthesis of modern econometrics available Econometrics provides first-year graduate students with a thoroughly modern introduction to the subject, covering all the standard material necessary for understanding the principal techniques of econometrics, from ordinary least squares through cointegration. The book is distinctive in developing both time-series and cross-section analysis fully, giving readers a unified framework for understanding and integrating results. Econometrics covers all the important topics in a succinct manner. All the estimation techniques that could possibly be taught in a first-year graduate course, except maximum likelihood, are treated as special cases of GMM (generalized methods of moments). Maximum likelihood estimators for a variety of models, such as probit and tobit, are collected in a separate chapter. This arrangement enables students to learn various estimation techniques in an efficient way. Virtually all the chapters include empirical applications drawn from labor economics, industrial organization, domestic and international finance, and macroeconomics. These empirical exercises provide students with hands-on experience applying the techniques covered. The exposition is rigorous yet accessible, requiring a working knowledge of very basic linear algebra and probability theory. All the results are stated as propositions so that students can see the points of the discussion and also the conditions under which those results hold. Most propositions are proved in the text. For students who intend to write a thesis on applied topics, the empirical applications in Econometrics are an excellent way to learn how to conduct empirical research. For theoretically inclined students, the no-compromise treatment of basic techniques is an ideal preparation for more advanced theory courses.

An Introduction to Statistical Learning

An Introduction to Statistical Learning
Author :
Publisher : Springer Nature
Total Pages : 617
Release :
ISBN-10 : 9783031387470
ISBN-13 : 3031387473
Rating : 4/5 (70 Downloads)

Synopsis An Introduction to Statistical Learning by : Gareth James

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Introductory Statistics 2e

Introductory Statistics 2e
Author :
Publisher :
Total Pages : 2106
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis Introductory Statistics 2e by : Barbara Illowsky

Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.

Applied Econometric Times Series

Applied Econometric Times Series
Author :
Publisher : Wiley
Total Pages : 498
Release :
ISBN-10 : 1118918614
ISBN-13 : 9781118918616
Rating : 4/5 (14 Downloads)

Synopsis Applied Econometric Times Series by : Walter Enders

Applied Econometrics with R

Applied Econometrics with R
Author :
Publisher : Springer Science & Business Media
Total Pages : 229
Release :
ISBN-10 : 9780387773186
ISBN-13 : 0387773185
Rating : 4/5 (86 Downloads)

Synopsis Applied Econometrics with R by : Christian Kleiber

R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.

Introduction to Bayesian Econometrics

Introduction to Bayesian Econometrics
Author :
Publisher : Cambridge University Press
Total Pages : 271
Release :
ISBN-10 : 9781107015319
ISBN-13 : 1107015316
Rating : 4/5 (19 Downloads)

Synopsis Introduction to Bayesian Econometrics by : Edward Greenberg

This textbook explains the basic ideas of subjective probability and shows how subjective probabilities must obey the usual rules of probability to ensure coherency. It defines the likelihood function, prior distributions and posterior distributions. It explains how posterior distributions are the basis for inference and explores their basic properties. Various methods of specifying prior distributions are considered, with special emphasis on subject-matter considerations and exchange ability. The regression model is examined to show how analytical methods may fail in the derivation of marginal posterior distributions. The remainder of the book is concerned with applications of the theory to important models that are used in economics, political science, biostatistics and other applied fields. New to the second edition is a chapter on semiparametric regression and new sections on the ordinal probit, item response, factor analysis, ARCH-GARCH and stochastic volatility models. The new edition also emphasizes the R programming language.