Integrated Computational Materials Engineering Icme For Metals
Download Integrated Computational Materials Engineering Icme For Metals full books in PDF, epub, and Kindle. Read online free Integrated Computational Materials Engineering Icme For Metals ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Mark F. Horstemeyer |
Publisher |
: John Wiley & Sons |
Total Pages |
: 474 |
Release |
: 2012-06-07 |
ISBN-10 |
: 9781118342657 |
ISBN-13 |
: 1118342658 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Integrated Computational Materials Engineering (ICME) for Metals by : Mark F. Horstemeyer
State-of-the-technology tools for designing, optimizing, and manufacturing new materials Integrated computational materials engineering (ICME) uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. Increasingly, ICME is the preferred paradigm for design, development, and manufacturing of structural products. Written by one of the world's leading ICME experts, this text delivers a comprehensive, practical introduction to the field, guiding readers through multiscale materials processing modeling and simulation with easy-to-follow explanations and examples. Following an introductory chapter exploring the core concepts and the various disciplines that have contributed to the development of ICME, the text covers the following important topics with their associated length scale bridging methodologies: Macroscale continuum internal state variable plasticity and damage theory and multistage fatigue Mesoscale analysis: continuum theory methods with discrete features and methods Discrete dislocation dynamics simulations Atomistic modeling methods Electronics structures calculations Next, the author provides three chapters dedicated to detailed case studies, including "From Atoms to Autos: A Redesign of a Cadillac Control Arm," that show how the principles and methods of ICME work in practice. The final chapter examines the future of ICME, forecasting the development of new materials and engineering structures with the help of a cyberinfrastructure that has been recently established. Integrated Computational Materials Engineering (ICME) for Metals is recommended for both students and professionals in engineering and materials science, providing them with new state-of-the-technology tools for selecting, designing, optimizing, and manufacturing new materials. Instructors who adopt this text for coursework can take advantage of PowerPoint lecture notes, a questions and solutions manual, and tutorials to guide students through the models and codes discussed in the text.
Author |
: Mark F. Horstemeyer |
Publisher |
: John Wiley & Sons |
Total Pages |
: 654 |
Release |
: 2018-03-01 |
ISBN-10 |
: 9781119018384 |
ISBN-13 |
: 1119018382 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Integrated Computational Materials Engineering (ICME) for Metals by : Mark F. Horstemeyer
Focuses entirely on demystifying the field and subject of ICME and provides step-by-step guidance on its industrial application via case studies This highly-anticipated follow-up to Mark F. Horstemeyer’s pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—Integrated Computational Materials Engineering (ICME) For Metals: Concepts and Case Studies focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. Integrated Computational Materials Engineering (ICME) For Metals: Case Studies educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more. Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys Demonstrates several practical engineering problems to encourage industry to employ ICME ideas Introduces a new simulation-based design paradigm Provides web access to microstructure-sensitive models and experimental database Integrated Computational Materials Engineering (ICME) For Metals: Case Studies is a must-have book for researchers and industry professionals aiming to comprehend and employ ICME in the design and development of new materials.
Author |
: Mark F. Horstemeyer |
Publisher |
: John Wiley & Sons |
Total Pages |
: 712 |
Release |
: 2018-03-20 |
ISBN-10 |
: 9781119018360 |
ISBN-13 |
: 1119018366 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Integrated Computational Materials Engineering (ICME) for Metals by : Mark F. Horstemeyer
Focuses entirely on demystifying the field and subject of ICME and provides step-by-step guidance on its industrial application via case studies This highly-anticipated follow-up to Mark F. Horstemeyer’s pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—Integrated Computational Materials Engineering (ICME) For Metals: Concepts and Case Studies focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. Integrated Computational Materials Engineering (ICME) For Metals: Case Studies educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more. Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys Demonstrates several practical engineering problems to encourage industry to employ ICME ideas Introduces a new simulation-based design paradigm Provides web access to microstructure-sensitive models and experimental database Integrated Computational Materials Engineering (ICME) For Metals: Case Studies is a must-have book for researchers and industry professionals aiming to comprehend and employ ICME in the design and development of new materials.
Author |
: National Research Council |
Publisher |
: National Academies Press |
Total Pages |
: 152 |
Release |
: 2008-10-24 |
ISBN-10 |
: 9780309119993 |
ISBN-13 |
: 0309119995 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Integrated Computational Materials Engineering by : National Research Council
Integrated computational materials engineering (ICME) is an emerging discipline that can accelerate materials development and unify design and manufacturing. Developing ICME is a grand challenge that could provide significant economic benefit. To help develop a strategy for development of this new technology area, DOE and DoD asked the NRC to explore its benefits and promises, including the benefits of a comprehensive ICME capability; to establish a strategy for development and maintenance of an ICME infrastructure, and to make recommendations about how best to meet these opportunities. This book provides a vision for ICME, a review of case studies and lessons learned, an analysis of technological barriers, and an evaluation of ways to overcome cultural and organizational challenges to develop the discipline.
Author |
: Richard LeSar |
Publisher |
: Cambridge University Press |
Total Pages |
: 429 |
Release |
: 2013-03-28 |
ISBN-10 |
: 9781107328143 |
ISBN-13 |
: 1107328144 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Introduction to Computational Materials Science by : Richard LeSar
Emphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behaviour. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modelling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need.
Author |
: Paul Mason |
Publisher |
: Springer |
Total Pages |
: 374 |
Release |
: 2017-04-27 |
ISBN-10 |
: 9783319578644 |
ISBN-13 |
: 3319578642 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017) by : Paul Mason
This book represents a collection of papers presented at the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017), a specialty conference organized by The Minerals, Metals & Materials Society (TMS). The contributions offer topics relevant to the global advancement of ICME as an engineering discipline. Topics covered include the following:ICME Success Stories and ApplicationsVerification, Validation, Uncertainty Quantification Issues and Gap AnalysisIntegration Framework and UsageAdditive ManufacturingPhase Field ModelingMicrostructure EvolutionICME Design Tools and ApplicationMechanical Performance Using Multi-Scale Modeling
Author |
: Koenraad Janssens |
Publisher |
: |
Total Pages |
: 360 |
Release |
: 2010 |
ISBN-10 |
: OCLC:1105789454 |
ISBN-13 |
: |
Rating |
: 4/5 (54 Downloads) |
Synopsis Computational Materials Engineering by : Koenraad Janssens
Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials scientists and engineers, and those involved in materials applications like mechanical engineers, civil engineers, electrical engineers, and chemical engineers.
Author |
: Franz Roters |
Publisher |
: John Wiley & Sons |
Total Pages |
: 188 |
Release |
: 2011-08-04 |
ISBN-10 |
: 9783527642090 |
ISBN-13 |
: 3527642099 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Crystal Plasticity Finite Element Methods by : Franz Roters
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Author |
: Robert J. Lancaster |
Publisher |
: Trans Tech Publications Ltd |
Total Pages |
: 722 |
Release |
: 2020-12-01 |
ISBN-10 |
: 9783035737523 |
ISBN-13 |
: 3035737525 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Metal Additive Manufacturing by : Robert J. Lancaster
Aggregated Book
Author |
: Yan Wang |
Publisher |
: Woodhead Publishing |
Total Pages |
: 604 |
Release |
: 2020-03-12 |
ISBN-10 |
: 9780081029411 |
ISBN-13 |
: 0081029411 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Uncertainty Quantification in Multiscale Materials Modeling by : Yan Wang
Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.