Integral Materials Modeling

Integral Materials Modeling
Author :
Publisher : John Wiley & Sons
Total Pages : 317
Release :
ISBN-10 : 9783527317110
ISBN-13 : 3527317112
Rating : 4/5 (10 Downloads)

Synopsis Integral Materials Modeling by : Günter Gottstein

Adopting a holistic approach to materials simulation, this monograph covers four very important structural materials: aluminum, carbon steels, superalloys, and plastics. Following an introduction to the concept of integral modeling, the book goes on to cover a wide range of production steps and usage, including melt flow and solidification behavior, coating, shaping, thermal treatment, deep drawing, hardness and ductility, damage initiation, and deformation behavior.

Advanced Computational Materials Modeling

Advanced Computational Materials Modeling
Author :
Publisher : John Wiley & Sons
Total Pages : 453
Release :
ISBN-10 : 9783527632336
ISBN-13 : 3527632336
Rating : 4/5 (36 Downloads)

Synopsis Advanced Computational Materials Modeling by : Miguel Vaz Junior

With its discussion of strategies for modeling complex materials using new numerical techniques, mainly those based on the finite element method, this monograph covers a range of topics including computational plasticity, multi-scale formulations, optimization and parameter identification, damage mechanics and nonlinear finite elements.

Handbook of Materials Modeling

Handbook of Materials Modeling
Author :
Publisher : Springer Science & Business Media
Total Pages : 2903
Release :
ISBN-10 : 9781402032868
ISBN-13 : 1402032862
Rating : 4/5 (68 Downloads)

Synopsis Handbook of Materials Modeling by : Sidney Yip

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Multiscale Materials Modeling for Nanomechanics

Multiscale Materials Modeling for Nanomechanics
Author :
Publisher : Springer
Total Pages : 554
Release :
ISBN-10 : 9783319334806
ISBN-13 : 3319334808
Rating : 4/5 (06 Downloads)

Synopsis Multiscale Materials Modeling for Nanomechanics by : Christopher R. Weinberger

This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.

Advanced Materials Modelling for Mechanical, Medical and Biological Applications

Advanced Materials Modelling for Mechanical, Medical and Biological Applications
Author :
Publisher : Springer Nature
Total Pages : 475
Release :
ISBN-10 : 9783030817053
ISBN-13 : 3030817059
Rating : 4/5 (53 Downloads)

Synopsis Advanced Materials Modelling for Mechanical, Medical and Biological Applications by : Holm Altenbach

The book is devoted to the 70th birthday of Prof. Sergey M. Aizikovich, which will celebrated on August 2nd 2021. His scientific interests are related to the following topics: Mechanics of contact interactions, Functionally graded materials, Mechanics of fracture, Integral equations of mathematical physics, Inverse problems of the theory of elasticity, and Applications of elasticity to biological and medical problems of mechanics of materials. The papers, collected in the book, are contributions of authors from 10 countries.

Dynamic Materials Models in Computer Programs

Dynamic Materials Models in Computer Programs
Author :
Publisher : DIANE Publishing
Total Pages : 176
Release :
ISBN-10 : 0788148176
ISBN-13 : 9780788148170
Rating : 4/5 (76 Downloads)

Synopsis Dynamic Materials Models in Computer Programs by : Lennart Agardh

Presents unrevised proceedings of a 1996 workshop on material modeling held in Stockholm. Discussions include: analysis of concrete structures using Abaqus/Explicit; brittle failure and crack propagation in concrete; implementation of material models in Dyna-3D; analysis of impact on reinforced concrete structures with LS-Dyna3D; modeling of brittle materials for hydrocodes; implementation of the Johnson-Holmquist model as a user subroutine in Autodyne and penetration of tungsten rods into Alumina targets; and testing materials with "Hopkinson Torsion Bar" equipment. Charts and tables.

Introduction to the Network Approximation Method for Materials Modeling

Introduction to the Network Approximation Method for Materials Modeling
Author :
Publisher : Cambridge University Press
Total Pages : 259
Release :
ISBN-10 : 9781107028234
ISBN-13 : 110702823X
Rating : 4/5 (34 Downloads)

Synopsis Introduction to the Network Approximation Method for Materials Modeling by : Leonid Berlyand

Introduces graduate students to the state of the art in this fast-developing field of applied mathematics.

Modeling the Material Behavior under Metal Cutting Conditions

Modeling the Material Behavior under Metal Cutting Conditions
Author :
Publisher : Apprimus Wissenschaftsverlag
Total Pages : 204
Release :
ISBN-10 : 9783985550616
ISBN-13 : 3985550611
Rating : 4/5 (16 Downloads)

Synopsis Modeling the Material Behavior under Metal Cutting Conditions by : Marvin Hardt

The scientific goal of the present work was to model the workpiece material behavior of steels in the metal cutting process depending on the occurring thermo-mechanical loads. The results of this work shall make a significant contribution to the predictive process design of the cutting process by means of Finite Element (FE) simulations for the virtual representation of the reality in the sense of the digital twin. To achieve the objective, extensive empirical examinations were conducted in a first step, which included conventional material scientific and orthogonal cutting tests. This enabled the establishment of a database of the workpiece response with increasing thermo-mechanical loads. During the orthogonal cutting examinations, integral and locally resolved process results were measured, which were used as calibration and validation variables in the modeling of the workpiece material behavior. By extending an established friction test bench with a workpiece pre-heating system, the friction conditions between tool and workpiece could be investigated under conditions equivalent to the cutting process. Based on the experimental results, a friction model was derived, in which the observed effects of thermal softening and the localized adhesion-induced increase in the apparent friction coefficient were superposed. A phenomenological material model was developed to describe the workpiece material behavior in the cutting process. The formulation of the material mode was developed based on empirical examinations as well as results from the state of the art. The material model was implemented in an FE-chip formation simulation using a subroutine. A hybrid optimization algorithm was developed to inversely determine the material model parameters. By means of the optimization algorithm, the material model parameters could be systematically determined inversely, taking the experimentally determined process observables into account. An automated procedure linked to a user interface lowered the entry hurdle for industrial companies and unexperienced users of FE-simulations and reduced the computational effort for the inverse parameter determination to about 10 days of computational execution time. The quality of the developed models and the determined model parameters were further verified by a final deduction step using the industrial example of face turning.

Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes

Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes
Author :
Publisher : Springer Nature
Total Pages : 368
Release :
ISBN-10 : 9783030453244
ISBN-13 : 3030453243
Rating : 4/5 (44 Downloads)

Synopsis Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes by : Anand Balu Nellippallil

This book explores systems-based, co-design, introducing a “Decision-Based, Co-Design” (DBCD) approach for the co-design of materials, products, and processes. In recent years there have been significant advances in modeling and simulation of material behavior, from the smallest atomic scale to the macro scale. However, the uncertainties associated with these approaches and models across different scales need to be addressed to enable decision-making resulting in designs that are robust, that is, relatively insensitive to uncertainties. An approach that facilitates co-design is needed across material, product design and manufacturing processes. This book describes a cloud-based platform to support decisions in the design of engineered systems (CB-PDSIDES), which feature an architecture that promotes co-design through the servitization of decision-making, knowledge capture and use templates that allow previous solutions to be reused. Placing the platform in the cloud aids mass collaboration and open innovation. A valuable reference resource reference on all areas related to the design of materials, products and processes, the book appeals to material scientists, design engineers and all those involved in the emerging interdisciplinary field of integrated computational materials engineering (ICME).