Integer And Polynomial Algebra
Download Integer And Polynomial Algebra full books in PDF, epub, and Kindle. Read online free Integer And Polynomial Algebra ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Ronald S. Irving |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 283 |
Release |
: 2004-01-08 |
ISBN-10 |
: 9780387403977 |
ISBN-13 |
: 0387403973 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Integers, Polynomials, and Rings by : Ronald S. Irving
This book began life as a set of notes that I developed for a course at the University of Washington entitled Introduction to Modern Algebra for Tea- ers. Originally conceived as a text for future secondary-school mathematics teachers, it has developed into a book that could serve well as a text in an - dergraduatecourseinabstractalgebraoracoursedesignedasanintroduction to higher mathematics. This book di?ers from many undergraduate algebra texts in fundamental ways; the reasons lie in the book’s origin and the goals I set for the course. The course is a two-quarter sequence required of students intending to f- ?ll the requirements of the teacher preparation option for our B.A. degree in mathematics, or of the teacher preparation minor. It is required as well of those intending to matriculate in our university’s Master’s in Teaching p- gram for secondary mathematics teachers. This is the principal course they take involving abstraction and proof, and they come to it with perhaps as little background as a year of calculus and a quarter of linear algebra. The mathematical ability of the students varies widely, as does their level of ma- ematical interest.
Author |
: Kenneth R. Davidson |
Publisher |
: American Mathematical Society |
Total Pages |
: 200 |
Release |
: 2023-10-30 |
ISBN-10 |
: 9781470473327 |
ISBN-13 |
: 1470473321 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Integer and Polynomial Algebra by : Kenneth R. Davidson
This book is a concrete introduction to abstract algebra and number theory. Starting from the basics, it develops the rich parallels between the integers and polynomials, covering topics such as Unique Factorization, arithmetic over quadratic number fields, the RSA encryption scheme, and finite fields. In addition to introducing students to the rigorous foundations of mathematical proofs, the authors cover several specialized topics, giving proofs of the Fundamental Theorem of Algebra, the transcendentality of $e$, and Quadratic Reciprocity Law. The book is aimed at incoming undergraduate students with a strong passion for mathematics.
Author |
: Victor V. Prasolov |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 311 |
Release |
: 2009-09-23 |
ISBN-10 |
: 9783642039805 |
ISBN-13 |
: 3642039804 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Polynomials by : Victor V. Prasolov
Covers its topic in greater depth than the typical standard books on polynomial algebra
Author |
: Jaime Gutierrez |
Publisher |
: Springer |
Total Pages |
: 222 |
Release |
: 2015-01-20 |
ISBN-10 |
: 9783319150819 |
ISBN-13 |
: 3319150812 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Computer Algebra and Polynomials by : Jaime Gutierrez
Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.
Author |
: Paul-Jean Cahen |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 345 |
Release |
: 1997 |
ISBN-10 |
: 9780821803882 |
ISBN-13 |
: 0821803883 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Integer-valued Polynomials by : Paul-Jean Cahen
Integer-valued polynomials on the ring of integers have been known for a long time and have been used in calculus. Polya and Ostrowski generalized this notion to rings of integers of number fields. More generally still, one may consider a domain $D$ and the polynomials (with coefficients in its quotient field) mapping $D$ into itself. They form a $D$-algebra - that is, a $D$-module with a ring structure. Appearing in a very natural fashion, this ring possesses quite a rich structure, and the very numerous questions it raises allow a thorough exploration of commutative algebra. Here is the first book devoted entirely to this topic. This book features: thorough reviews of many published works; self-contained text with complete proofs; and numerous exercises.
Author |
: Trygve Nagell |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 309 |
Release |
: 2021-07-21 |
ISBN-10 |
: 9781470463243 |
ISBN-13 |
: 1470463245 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Introduction to Number Theory by : Trygve Nagell
A special feature of Nagell's well-known text is the rather extensive treatment of Diophantine equations of second and higher degree. A large number of non-routine problems are given. Reviews & Endorsements This is a very readable introduction to number theory, with particular emphasis on diophantine equations, and requires only a school knowledge of mathematics. The exposition is admirably clear. More advanced or recent work is cited as background, where relevant … [T]here are welcome novelties: Gauss's own evaluation of Gauss's sums, which is still perhaps the most elegant, is reproduced apparently for the first time. There are 180 examples, many of considerable interest, some of these being little known. -- Mathematical Reviews
Author |
: Lynn Marecek |
Publisher |
: |
Total Pages |
: 1148 |
Release |
: 2020-03-11 |
ISBN-10 |
: 1680923269 |
ISBN-13 |
: 9781680923261 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Prealgebra 2e by : Lynn Marecek
The images in this book are in color. For a less-expensive grayscale paperback version, see ISBN 9781680923254. Prealgebra 2e is designed to meet scope and sequence requirements for a one-semester prealgebra course. The text introduces the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. Each topic builds upon previously developed material to demonstrate the cohesiveness and structure of mathematics. Students who are taking basic mathematics and prealgebra classes in college present a unique set of challenges. Many students in these classes have been unsuccessful in their prior math classes. They may think they know some math, but their core knowledge is full of holes. Furthermore, these students need to learn much more than the course content. They need to learn study skills, time management, and how to deal with math anxiety. Some students lack basic reading and arithmetic skills. The organization of Prealgebra makes it easy to adapt the book to suit a variety of course syllabi.
Author |
: Chee-Keng Yap |
Publisher |
: Oxford University Press on Demand |
Total Pages |
: 511 |
Release |
: 2000 |
ISBN-10 |
: 0195125169 |
ISBN-13 |
: 9780195125160 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Fundamental Problems of Algorithmic Algebra by : Chee-Keng Yap
Popular computer algebra systems such as Maple, Macsyma, Mathematica, and REDUCE are now basic tools on most computers. Efficient algorithms for various algebraic operations underlie all these systems. Computer algebra, or algorithmic algebra, studies these algorithms and their properties and represents a rich intersection of theoretical computer science with classical mathematics. Fundamental Problems of Algorithmic Algebra provides a systematic and focused treatment of a collection of core problemsthe computational equivalents of the classical Fundamental Problem of Algebra and its derivatives. Topics covered include the GCD, subresultants, modular techniques, the fundamental theorem of algebra, roots of polynomials, Sturm theory, Gaussian lattice reduction, lattices and polynomial factorization, linear systems, elimination theory, Grobner bases, and more. Features · Presents algorithmic ideas in pseudo-code based on mathematical concepts and can be used with any computer mathematics system · Emphasizes the algorithmic aspects of problems without sacrificing mathematical rigor · Aims to be self-contained in its mathematical development · Ideal for a first course in algorithmic or computer algebra for advanced undergraduates or beginning graduate students
Author |
: Jay Abramson |
Publisher |
: |
Total Pages |
: 892 |
Release |
: 2018-01-07 |
ISBN-10 |
: 9888407430 |
ISBN-13 |
: 9789888407439 |
Rating |
: 4/5 (30 Downloads) |
Synopsis College Algebra by : Jay Abramson
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
Author |
: H. P. F. Swinnerton-Dyer |
Publisher |
: Cambridge University Press |
Total Pages |
: 164 |
Release |
: 2001-02-22 |
ISBN-10 |
: 0521004233 |
ISBN-13 |
: 9780521004237 |
Rating |
: 4/5 (33 Downloads) |
Synopsis A Brief Guide to Algebraic Number Theory by : H. P. F. Swinnerton-Dyer
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.