Human Modeling For Bio Inspired Robotics
Download Human Modeling For Bio Inspired Robotics full books in PDF, epub, and Kindle. Read online free Human Modeling For Bio Inspired Robotics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Jun Ueda |
Publisher |
: Academic Press |
Total Pages |
: 360 |
Release |
: 2016-09-02 |
ISBN-10 |
: 9780128031520 |
ISBN-13 |
: 0128031522 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Human Modeling for Bio-Inspired Robotics by : Jun Ueda
Human Modelling for Bio-inspired Robotics: Mechanical Engineering in Assistive Technologies presents the most cutting-edge research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications. Intended to provide researchers both in academia and industry with key content on which to base their developments, this book is organized and written by senior experts in their fields. Human Modeling for Bio-Inspired Robotics: Mechanical Engineering in Assistive Technologies offers a system-level investigation into human mechanisms that inspire the development of assistive technologies and humanoid robotics, including topics in modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation and integration. Each chapter is written by a subject expert and discusses its background, research challenges, key outcomes, application, and future trends. This book will be especially useful for academic and industry researchers in this exciting field, as well as graduate-level students to bring them up to speed with the latest technology in mechanical design and control aspects of the area. Previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing is assumed. - Presents the most recent research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications - Covers background information and fundamental concepts of human modelling - Includes modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation, integration, and safety issues - Assumes previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing
Author |
: Yunhui Liu |
Publisher |
: CRC Press |
Total Pages |
: 343 |
Release |
: 2011-12-21 |
ISBN-10 |
: 9781439854884 |
ISBN-13 |
: 1439854882 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Biologically Inspired Robotics by : Yunhui Liu
Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers in the fields of control engineering, robotics, and biomedical engineering, this text helps readers understand the technology and principles in this emerging field.
Author |
: Toshio Fukuda |
Publisher |
: MDPI |
Total Pages |
: 555 |
Release |
: 2018-11-07 |
ISBN-10 |
: 9783038970453 |
ISBN-13 |
: 303897045X |
Rating |
: 4/5 (53 Downloads) |
Synopsis Bio-Inspired Robotics by : Toshio Fukuda
This book is a printed edition of the Special Issue "Bio-Inspired Robotics" that was published in Applied Sciences
Author |
: Maziar Ahmad Sharbafi |
Publisher |
: Butterworth-Heinemann |
Total Pages |
: 698 |
Release |
: 2017-11-21 |
ISBN-10 |
: 9780128037744 |
ISBN-13 |
: 0128037741 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Bioinspired Legged Locomotion by : Maziar Ahmad Sharbafi
Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. - Presents state-of-the-art control approaches with biological relevance - Provides a thorough understanding of the principles of organization of biological locomotion - Teaches the organization of complex systems based on low-dimensional motion concepts/control - Acts as a guideline reference for future robots/assistive devices with legged architecture - Includes a selective bibliography on the most relevant published articles
Author |
: Dario Floreano |
Publisher |
: MIT Press |
Total Pages |
: 674 |
Release |
: 2023-04-04 |
ISBN-10 |
: 9780262547734 |
ISBN-13 |
: 0262547732 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Bio-Inspired Artificial Intelligence by : Dario Floreano
A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.
Author |
: Scott L. Hooper |
Publisher |
: John Wiley & Sons |
Total Pages |
: 512 |
Release |
: 2017-06-12 |
ISBN-10 |
: 9781118873342 |
ISBN-13 |
: 1118873343 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Neurobiology of Motor Control by : Scott L. Hooper
A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.
Author |
: Ahmad Taher Azar |
Publisher |
: Academic Press |
Total Pages |
: 504 |
Release |
: 2019-11-30 |
ISBN-10 |
: 9780128174647 |
ISBN-13 |
: 0128174641 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Control Systems Design of Bio-Robotics and Bio-Mechatronics with Advanced Applications by : Ahmad Taher Azar
Control Systems Design of Bio-Robotics and Bio-Mechatronics with Advanced Applications delivers essential and advanced bioengineering information on the application of control and robotics technologies in the life sciences. Judging by what we have witnessed so far, this exciting field of control systems and robotics in bioengineering is likely to produce revolutionary breakthroughs over the next decade. While this book is intended for senior undergraduate or graduate students in both control engineering and biomedical engineering programs, it will also appeal to medical researchers and practitioners who want to enhance their quantitative understanding of physiological processes. - Focuses on the engineering and scientific principles underlying the extraordinary performance of biomedical robotics and bio-mechatronics - Demonstrates the application of principles for designing corresponding algorithms - Presents the latest innovative approaches to medical diagnostics and procedures, as well as clinical rehabilitation from the point-of-view of dynamic modeling, system analysis and control
Author |
: Minjun Kim |
Publisher |
: William Andrew |
Total Pages |
: 329 |
Release |
: 2012-03-08 |
ISBN-10 |
: 9781455778942 |
ISBN-13 |
: 145577894X |
Rating |
: 4/5 (42 Downloads) |
Synopsis Microbiorobotics by : Minjun Kim
Microbiorobotics is a new engineering discipline that inherently involves a multidisciplinary approach (mechanical engineering, cellular biology, mathematical modeling, control systems, synthetic biology, etc). Building robotics system in the micro scale is an engineering task that has resulted in many important applications, ranging from micromanufacturing techniques to cellular manipulation. However, it is also a very challenging engineering task. One of the reasons is because many engineering ideas and principles that are used in larger scales do not scale well to the micro-scale. For example, locomotion principles in a fluid do not function in the same way, and the use of rotational motors is impractical because of the difficulty of building of the required components. Microrobotics is an area that is acknowledged to have massive potential in applications from medicine to manufacturing. This book introduces an inter-disciplinary readership to the toolkit that micro-organisms offer to micro-engineering The design of robots, sensors and actuators faces a range of techology challenges at the micro-scale. This book shows how biological techniques and materials can be used to meet these challenges World-class multi-disciplanry editors and contributors leverage insights from engineering, mathematical modeling and the life sciences – creating a novel toolkit for microrobotics
Author |
: Bruno Siciliano |
Publisher |
: Springer |
Total Pages |
: 2259 |
Release |
: 2016-07-27 |
ISBN-10 |
: 9783319325521 |
ISBN-13 |
: 3319325523 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Springer Handbook of Robotics by : Bruno Siciliano
The second edition of this handbook provides a state-of-the-art overview on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook’s team. A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app. Springer Handbook of Robotics Multimedia Extension Portal: http://handbookofrobotics.org/
Author |
: Rowland Wilson |
Publisher |
: |
Total Pages |
: 0 |
Release |
: 2016-05-27 |
ISBN-10 |
: 1682851818 |
ISBN-13 |
: 9781682851814 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Biomimetic Robotics by : Rowland Wilson
Robotics is a rapidly growing branch of engineering dealing with the designing, modelling and application of robots. Biomimetics is bringing forth new breakthroughs in the field of bio-engineering and bio-inspired robotics. Biomimetic robotics has diverse applications and is a growing field of robotic engineering. It involves the principles and techniques of nanotechnology, fibre optics and other engineering methods for developing bio-morphic systems, artificial implants and bionic implants. Researches and case-studies by internationally acclaimed experts are collated to provide a comprehensive insight into the techniques, modules and the new challenges emerging in the field. It is helpful for students, researchers and professionals associated with robotic engineering and biomimetics.