Robots for Learning

Robots for Learning
Author :
Publisher : Frontiers Media SA
Total Pages : 166
Release :
ISBN-10 : 9782832507087
ISBN-13 : 2832507085
Rating : 4/5 (87 Downloads)

Synopsis Robots for Learning by : Wafa Johal

Encyclopedia of Virology

Encyclopedia of Virology
Author :
Publisher : Academic Press
Total Pages : 4109
Release :
ISBN-10 : 9780128145166
ISBN-13 : 0128145161
Rating : 4/5 (66 Downloads)

Synopsis Encyclopedia of Virology by :

Encyclopedia of Virology, Fourth Edition, Five Volume Set builds on the solid foundation laid by the previous editions, expanding its reach with new and timely topics. In five volumes, the work provides comprehensive coverage of the whole virosphere, making this a unique resource. Content explores viruses present in the environment and the pathogenic viruses of humans, animals, plants and microorganisms. Key areas and concepts concerning virus classification, structure, epidemiology, pathogenesis, diagnosis, treatment and prevention are discussed, guiding the reader through chapters that are presented at an accessible level, and include further readings for those needing more specific information. More than ever now, with the Covid19 pandemic, we are seeing the huge impact viruses have on our life and society. This encyclopedia is a must-have resource for scientists and practitioners, and a great source of information for the wider public. Offers students and researchers a one-stop shop for information on virology not easily available elsewhere Fills a critical gap of information in a field that has seen significant progress in recent years Authored and edited by recognized experts in the field, with a range of different expertise, thus ensuring a high-quality standard

Affective and Social Signals for HRI

Affective and Social Signals for HRI
Author :
Publisher : Frontiers Media SA
Total Pages : 185
Release :
ISBN-10 : 9782889634545
ISBN-13 : 288963454X
Rating : 4/5 (45 Downloads)

Synopsis Affective and Social Signals for HRI by : Hatice Gunes

Designing robots with socio-emotional skills is a challenging research topic still in its infancy. These skills are important for robots to be able to provide not only physical, but also social support to human users, and to engage in and sustain long-term interactions with them in a variety of application domains that require human-robot interaction, including healthcare, education, entertainment, manufacturing, and many others. The availability of commercial robotic platforms and developments in collaborative academic research provide us a positive outlook, however, the capabilities of current social robots are quite limited. The main challenge is understanding the underlying mechanisms of the humans in responding to and interacting with real life situations, and how to model these mechanisms for the embodiment of naturalistic, human-inspired behaviors via robots. To address this challenge successfully requires an understanding of the essential components of social interaction including nonverbal behavioral cues such as interpersonal distance, body position, body posture, arm and hand gestures, head and facial gestures, gaze, silences, vocal outbursts and their dynamics. To create truly intelligent social robots, these nonverbal cues need to be interpreted to form an understanding of the higher level phenomena including first-impression formation, social roles, interpersonal relationships, focus of attention, synchrony, affective states, emotions, and personality, and in turn defining optimal protocols and behaviors to express these phenomena through robotic platforms in an appropriate and timely manner. Achieving this goal requires the fields of psychology, nonverbal behavior, vision, social signal processing, affective computing, and HRI to constantly interact with one another. This Research Topic aims to foster such interactions and collaborations by bringing together the latest works and developments from across a range of research groups and disciplines working in these fields. The Research Topic is a collection of 14 articles that span across five research themes. Three articles co-authored by Terada and Takeuchi, Jung et al., and Kennedy et al. explore the design of “social and affective cues” for robots and investigate their effects on human-robot interaction. Mirnig et al., Bremner et al., and Strait et al. investigate people’s “perceptions of robots” in different settings and scenarios, such as when robots make errors. Articles by Lee et al., Leite et al., and Heath et al. investigate the factors that shape “dialogic interaction with robots,” such as interaction context. The articles under the theme “social and affective therapy” by Rouaix et al., Rudovic et al., and Matsuda et al. report on how individuals from clinical populations, such as those with dementia, autism, and other pervasive developmental disorders (PDDs), interact with robots in therapeutic scenarios. Finally, Miklósi et al. and Durantin et al. offer “new perspectives in human-robot interaction” with a focus on reframing social interaction and human-robot relationships. We are excited about sharing this rich collection with the scientific community and about its contributions to the human-robot interaction literature.

Lethal Autonomous Weapons

Lethal Autonomous Weapons
Author :
Publisher : Oxford University Press, USA
Total Pages : 321
Release :
ISBN-10 : 9780197546048
ISBN-13 : 0197546048
Rating : 4/5 (48 Downloads)

Synopsis Lethal Autonomous Weapons by : Jai Galliott

"Because of the increasing use of Unmanned Aerial Vehicles (UAVs, also commonly known as drones) in various military and para-military (i.e., CIA) settings, there has been increasing debate in the international community as to whether it is morally and ethically permissible to allow robots (flying or otherwise) the ability to decide when and where to take human life. In addition, there has been intense debate as to the legal aspects, particularly from a humanitarian law framework. In response to this growing international debate, the United States government released the Department of Defense (DoD) 3000.09 Directive (2011), which sets a policy for if and when autonomous weapons would be used in US military and para-military engagements. This US policy asserts that only "human-supervised autonomous weapon systems may be used to select and engage targets, with the exception of selecting humans as targets, for local defense ...". This statement implies that outside of defensive applications, autonomous weapons will not be allowed to independently select and then fire upon targets without explicit approval from a human supervising the autonomous weapon system. Such a control architecture is known as human supervisory control, where a human remotely supervises an automated system (Sheridan 1992). The defense caveat in this policy is needed because the United States currently uses highly automated systems for defensive purposes, e.g., Counter Rocket, Artillery, and Mortar (C-RAM) systems and Patriot anti-missile missiles. Due to the time-critical nature of such environments (e.g., soldiers sleeping in barracks within easy reach of insurgent shoulder-launched missiles), these automated defensive systems cannot rely upon a human supervisor for permission because of the short engagement times and the inherent human neuromuscular lag which means that even if a person is paying attention, there is approximately a half-second delay in hitting a firing button, which can mean the difference for life and death for the soldiers in the barracks. So as of now, no US UAV (or any robot) will be able to launch any kind of weapon in an offensive environment without human direction and approval. However, the 3000.09 Directive does contain a clause that allows for this possibility in the future. This caveat states that the development of a weapon system that independently decides to launch a weapon is possible but first must be approved by the Under Secretary of Defense for Policy (USD(P)); the Under Secretary of Defense for Acquisition, Technology, and Logistics (USD(AT&L)); and the Chairman of the Joint Chiefs of Staff. Not all stakeholders are happy with this policy that leaves the door open for what used to be considered science fiction. Many opponents of such uses of technologies call for either an outright ban on autonomous weaponized systems, or in some cases, autonomous systems in general (Human Rights Watch 2013, Future of Life Institute 2015, Chairperson of the Informal Meeting of Experts 2016). Such groups take the position that weapons systems should always be under "meaningful human control," but do not give a precise definition of what this means. One issue in this debate that often is overlooked is that autonomy is not a discrete state, rather it is a continuum, and various weapons with different levels of autonomy have been in the US inventory for some time. Because of these ambiguities, it is often hard to draw the line between automated and autonomous systems. Present-day UAVs use the very same guidance, navigation and control technology flown on commercial aircraft. Tomahawk missiles, which have been in the US inventory for more than 30 years, are highly automated weapons with accuracies of less than a meter. These offensive missiles can navigate by themselves with no GPS, thus exhibiting some autonomy by today's definitions. Global Hawk UAVs can find their way home and land on their own without any human intervention in the case of a communication failure. The growth of the civilian UAV market is also a critical consideration in the debate as to whether these technologies should be banned outright. There is a $144.38B industry emerging for the commercial use of drones in agricultural settings, cargo delivery, first response, commercial photography, and the entertainment industry (Adroit Market Research 2019) More than $100 billion has been spent on driverless car development (Eisenstein 2018) in the past 10 years and the autonomy used in driverless cars mirrors that inside autonomous weapons. So, it is an important distinction that UAVs are simply the platform for weapon delivery (autonomous or conventional), and that autonomous systems have many peaceful and commercial uses independent of military applications"--

Rising Stars in Human-Robot Interaction

Rising Stars in Human-Robot Interaction
Author :
Publisher : Frontiers Media SA
Total Pages : 220
Release :
ISBN-10 : 9782889767571
ISBN-13 : 2889767574
Rating : 4/5 (71 Downloads)

Synopsis Rising Stars in Human-Robot Interaction by : Bilge Mutlu

Hri '15

Hri '15
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 1450328822
ISBN-13 : 9781450328821
Rating : 4/5 (22 Downloads)

Synopsis Hri '15 by : Julie A. Adams

HRI '15: ACM/IEEE International Conference on Human-Robot Interaction Mar 02, 2015-Mar 05, 2015 Portland, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.

The Handbook on Socially Interactive Agents

The Handbook on Socially Interactive Agents
Author :
Publisher : Morgan & Claypool
Total Pages : 712
Release :
ISBN-10 : 9781450398978
ISBN-13 : 1450398979
Rating : 4/5 (78 Downloads)

Synopsis The Handbook on Socially Interactive Agents by : Birgit Lugrin

The Handbook on Socially Interactive Agents provides a comprehensive overview of the research fields of Embodied Conversational Agents;Intelligent Virtual Agents;and Social Robotics. Socially Interactive Agents (SIAs);whether virtually or physically embodied;are autonomous agents that are able to perceive an environment including people or other agents;reason;decide how to interact;and express attitudes such as emotions;engagement;or empathy. They are capable of interacting with people and one another in a socially intelligent manner using multimodal communicative behaviors;with the goal to support humans in various domains. Written by international experts in their respective fields;the book summarizes research in the many important research communities pertinent for SIAs;while discussing current challenges and future directions. The handbook provides easy access to modeling and studying SIAs for researchers and students;and aims at further bridging the gap between the research communities involved. In two volumes;the book clearly structures the vast body of research. The first volume starts by introducing what is involved in SIAs research;in particular research methodologies and ethical implications of developing SIAs. It further examines research on appearance and behavior;focusing on multimodality. Finally;social cognition for SIAs is investigated using different theoretical models and phenomena such as theory of mind or pro-sociality. The second volume starts with perspectives on interaction;examined from different angles such as interaction in social space;group interaction;or long-term interaction. It also includes an extensive overview summarizing research and systems of human–agent platforms and of some of the major application areas of SIAs such as education;aging support;autism;and games.