How To Think About Abstract Algebra
Download How To Think About Abstract Algebra full books in PDF, epub, and Kindle. Read online free How To Think About Abstract Algebra ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Lara Alcock |
Publisher |
: Oxford University Press, USA |
Total Pages |
: 307 |
Release |
: 2021 |
ISBN-10 |
: 9780198843382 |
ISBN-13 |
: 0198843380 |
Rating |
: 4/5 (82 Downloads) |
Synopsis How to Think about Abstract Algebra by : Lara Alcock
How to Think about Abstract Algebra provides an engaging and readable introduction to its subject, which encompasses group theory and ring theory. Abstract Algebra is central in most undergraduate mathematics degrees, and it captures regularities that appear across diverse mathematical structures - many people find it beautiful for this reason. But its abstraction can make its central ideas hard to grasp, and even the best students might find that they can follow some of the reasoning without really understanding what it is all about. This book aims to solve that problem. It is not like other Abstract Algebra texts and is not a textbook containing standard content. Rather, it is designed to be read before starting an Abstract Algebra course, or as a companion text once a course has begun. It builds up key information on five topics: binary operations, groups, quotient groups, isomorphisms and homomorphisms, and rings. It provides numerous examples, tables and diagrams, and its explanations are informed by research in mathematics education. The book also provides study advice focused on the skills that students need in order to learn successfully in their own Abstract Algebra courses. It explains how to interact productively with axioms, definitions, theorems and proofs, and how research in psychology should inform our beliefs about effective learning.
Author |
: Charles C Pinter |
Publisher |
: Courier Corporation |
Total Pages |
: 402 |
Release |
: 2010-01-14 |
ISBN-10 |
: 9780486474175 |
ISBN-13 |
: 0486474178 |
Rating |
: 4/5 (75 Downloads) |
Synopsis A Book of Abstract Algebra by : Charles C Pinter
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Author |
: Paolo Aluffi |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 713 |
Release |
: 2021-11-09 |
ISBN-10 |
: 9781470465711 |
ISBN-13 |
: 147046571X |
Rating |
: 4/5 (11 Downloads) |
Synopsis Algebra: Chapter 0 by : Paolo Aluffi
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Author |
: Dan Saracino |
Publisher |
: Waveland Press |
Total Pages |
: 320 |
Release |
: 2008-09-02 |
ISBN-10 |
: 9781478610137 |
ISBN-13 |
: 1478610131 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Abstract Algebra by : Dan Saracino
The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.
Author |
: Ėrnest Borisovich Vinberg |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 532 |
Release |
: 2003-04-10 |
ISBN-10 |
: 0821834134 |
ISBN-13 |
: 9780821834138 |
Rating |
: 4/5 (34 Downloads) |
Synopsis A Course in Algebra by : Ėrnest Borisovich Vinberg
Presents modern algebra. This book includes such topics as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. It is suitable for independent study for advanced undergraduates and graduate students.
Author |
: Allan Clark |
Publisher |
: Courier Corporation |
Total Pages |
: 242 |
Release |
: 2012-07-06 |
ISBN-10 |
: 9780486140353 |
ISBN-13 |
: 0486140350 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Elements of Abstract Algebra by : Allan Clark
Lucid coverage of the major theories of abstract algebra, with helpful illustrations and exercises included throughout. Unabridged, corrected republication of the work originally published 1971. Bibliography. Index. Includes 24 tables and figures.
Author |
: Lara Alcock |
Publisher |
: OUP Oxford |
Total Pages |
: 272 |
Release |
: 2014-09-25 |
ISBN-10 |
: 9780191035371 |
ISBN-13 |
: 0191035378 |
Rating |
: 4/5 (71 Downloads) |
Synopsis How to Think About Analysis by : Lara Alcock
Analysis (sometimes called Real Analysis or Advanced Calculus) is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the student's existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.
Author |
: Frederic Eyssette |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 334 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461227526 |
ISBN-13 |
: 1461227526 |
Rating |
: 4/5 (26 Downloads) |
Synopsis Computational Algebraic Geometry by : Frederic Eyssette
The theory and practice of computation in algebraic geometry and related domains, from a mathematical point of view, has generated an increasing interest both for its rich theoretical possibilities and its usefulness in applications in science and engineering. In fact, it is one of the master keys for future significant improvement of the computer algebra systems (e.g., Reduce, Macsyma, Maple, Mathematica, Axiom, Macaulay, etc.) that have become such useful tools for many scientists in a variety of disciplines. The major themes covered in this volume, arising from papers p- sented at the conference MEGA-92 were: - Effective methods and complexity issues in commutative algebra, projective geometry, real geometry, and algebraic number theory - Algebra-geometric methods in algebraic computing and applica tions. MEGA-92 was the second of a new series of European conferences on the general theme of Effective Methods in Algebraic Geometry. It was held in Nice, France, on April 21-25, 1992 and built on the themes presented at MEGA-90 (Livomo, Italy, April 17-21, 1990). The next conference - MEGA-94 - will be held in Santander, Spain in the spring of 1994. The Organizing committee that initiatiod and supervises this bi enniel conference consists of A. Conte (Torino), J.H. Davenport (Bath), A. Galligo (Nice), D. Yu. Grigoriev (Petersburg), J. Heintz (Buenos Aires), W. Lassner (Leipzig), D. Lazard (paris), H.M. MOller (Hagen), T. Mora (Genova), M. Pohst (DUsseldort), T. Recio (Santander), J.J.
Author |
: W. Keith Nicholson |
Publisher |
: John Wiley & Sons |
Total Pages |
: 560 |
Release |
: 2012-03-20 |
ISBN-10 |
: 9781118135358 |
ISBN-13 |
: 1118135350 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Introduction to Abstract Algebra by : W. Keith Nicholson
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."—Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately begin to perform computations using abstract concepts that are developed in greater detail later in the text. The Fourth Edition features important concepts as well as specialized topics, including: The treatment of nilpotent groups, including the Frattini and Fitting subgroups Symmetric polynomials The proof of the fundamental theorem of algebra using symmetric polynomials The proof of Wedderburn's theorem on finite division rings The proof of the Wedderburn-Artin theorem Throughout the book, worked examples and real-world problems illustrate concepts and their applications, facilitating a complete understanding for readers regardless of their background in mathematics. A wealth of computational and theoretical exercises, ranging from basic to complex, allows readers to test their comprehension of the material. In addition, detailed historical notes and biographies of mathematicians provide context for and illuminate the discussion of key topics. A solutions manual is also available for readers who would like access to partial solutions to the book's exercises. Introduction to Abstract Algebra, Fourth Edition is an excellent book for courses on the topic at the upper-undergraduate and beginning-graduate levels. The book also serves as a valuable reference and self-study tool for practitioners in the fields of engineering, computer science, and applied mathematics.
Author |
: Igor R. Shafarevich |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 288 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642563256 |
ISBN-13 |
: 3642563252 |
Rating |
: 4/5 (56 Downloads) |
Synopsis Discourses on Algebra by : Igor R. Shafarevich
Using various examples this monograph shows that algebra is one of the most beautiful forms of mathematics. In doing so, it explains the basics of algebra, number theory, set theory and probability. The text presupposes very limited knowledge of mathematics, making it an ideal read for anybody new to the subject. The author, I.R. Shafarevich, is well-known across the world as one of the most outstanding mathematicians of this century as well as one of the most respected mathematical writers.