How To Measure The Infinite: Mathematics With Infinite And Infinitesimal Numbers

How To Measure The Infinite: Mathematics With Infinite And Infinitesimal Numbers
Author :
Publisher : World Scientific
Total Pages : 346
Release :
ISBN-10 : 9789813276604
ISBN-13 : 9813276606
Rating : 4/5 (04 Downloads)

Synopsis How To Measure The Infinite: Mathematics With Infinite And Infinitesimal Numbers by : Vieri Benci

'This text shows that the study of the almost-forgotten, non-Archimedean mathematics deserves to be utilized more intently in a variety of fields within the larger domain of applied mathematics.'CHOICEThis book contains an original introduction to the use of infinitesimal and infinite numbers, namely, the Alpha-Theory, which can be considered as an alternative approach to nonstandard analysis.The basic principles are presented in an elementary way by using the ordinary language of mathematics; this is to be contrasted with other presentations of nonstandard analysis where technical notions from logic are required since the beginning. Some applications are included and aimed at showing the power of the theory.The book also provides a comprehensive exposition of the Theory of Numerosity, a new way of counting (countable) infinite sets that maintains the ancient Euclid's Principle: 'The whole is larger than its parts'. The book is organized into five parts: Alpha-Calculus, Alpha-Theory, Applications, Foundations, and Numerosity Theory.

Non-standard Analysis

Non-standard Analysis
Author :
Publisher : Princeton University Press
Total Pages : 315
Release :
ISBN-10 : 9781400884223
ISBN-13 : 1400884225
Rating : 4/5 (23 Downloads)

Synopsis Non-standard Analysis by : Abraham Robinson

Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested in non-standard analysis. It treats in rich detail many areas of application, including topology, functions of a real variable, functions of a complex variable, and normed linear spaces, together with problems of boundary layer flow of viscous fluids and rederivations of Saint-Venant's hypothesis concerning the distribution of stresses in an elastic body.

Foundations of Infinitesimal Calculus

Foundations of Infinitesimal Calculus
Author :
Publisher : Prindle Weber & Schmidt
Total Pages : 214
Release :
ISBN-10 : 0871502151
ISBN-13 : 9780871502155
Rating : 4/5 (51 Downloads)

Synopsis Foundations of Infinitesimal Calculus by : H. Jerome Keisler

Handbook of Analysis and Its Foundations

Handbook of Analysis and Its Foundations
Author :
Publisher : Academic Press
Total Pages : 907
Release :
ISBN-10 : 9780080532998
ISBN-13 : 0080532993
Rating : 4/5 (98 Downloads)

Synopsis Handbook of Analysis and Its Foundations by : Eric Schechter

Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/

The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics

The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics
Author :
Publisher : Springer Nature
Total Pages : 320
Release :
ISBN-10 : 9783030187071
ISBN-13 : 3030187071
Rating : 4/5 (71 Downloads)

Synopsis The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics by : John L. Bell

This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.

Lectures on the Hyperreals

Lectures on the Hyperreals
Author :
Publisher : Springer Science & Business Media
Total Pages : 292
Release :
ISBN-10 : 9781461206156
ISBN-13 : 1461206154
Rating : 4/5 (56 Downloads)

Synopsis Lectures on the Hyperreals by : Robert Goldblatt

An introduction to nonstandard analysis based on a course given by the author. It is suitable for beginning graduates or upper undergraduates, or for self-study by anyone familiar with elementary real analysis. It presents nonstandard analysis not just as a theory about infinitely small and large numbers, but as a radically different way of viewing many standard mathematical concepts and constructions. It is a source of new ideas, objects and proofs, and a wealth of powerful new principles of reasoning. The book begins with the ultrapower construction of hyperreal number systems, and proceeds to develop one-variable calculus, analysis and topology from the nonstandard perspective. It then sets out the theory of enlargements of fragments of the mathematical universe, providing a foundation for the full-scale development of the nonstandard methodology. The final chapters apply this to a number of topics, including Loeb measure theory and its relation to Lebesgue measure on the real line. Highlights include an early introduction of the ideas of internal, external and hyperfinite sets, and a more axiomatic set-theoretic approach to enlargements than is usual.

Introduction to the Division by Zero Calculus

Introduction to the Division by Zero Calculus
Author :
Publisher : Scientific Research Publishing, Inc. USA
Total Pages : 203
Release :
ISBN-10 : 9781649970893
ISBN-13 : 1649970897
Rating : 4/5 (93 Downloads)

Synopsis Introduction to the Division by Zero Calculus by : SABUROU SAITOH

The common sense on the division by zero with the long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on differential coefficients we have a great missing since tan(π/2) = 0. Our mathematics is also wrong in elementary mathematics on the division by zero. In this book in a new and definite sense, we will show and give various applications of the division by zero 0/0 = 1/0 = z/0 = 0. In particular, we will introduce several fundamental concepts in calculus, Euclidean geometry, analytic geometry, complex analysis and differential equations. We will see new properties on the Laurent expansion, singularity, derivative, extension of solutions of differential equations beyond analytical and isolated singularities, and reduction problems of differential equations. On Euclidean geometry and analytic geometry, we will find new fields by the concept of the division by zero. We will collect many concrete properties in mathematical sciences from the viewpoint of the division by zero. We will know that the division by zero is our elementary and fundamental mathematics.

Introduction to Infinite Dimensional Stochastic Analysis

Introduction to Infinite Dimensional Stochastic Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 308
Release :
ISBN-10 : 9789401141086
ISBN-13 : 9401141088
Rating : 4/5 (86 Downloads)

Synopsis Introduction to Infinite Dimensional Stochastic Analysis by : Zhi-yuan Huang

The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).

Handbook of Measure Theory

Handbook of Measure Theory
Author :
Publisher : Elsevier
Total Pages : 1633
Release :
ISBN-10 : 9780080533094
ISBN-13 : 0080533094
Rating : 4/5 (94 Downloads)

Synopsis Handbook of Measure Theory by : E. Pap

The main goal of this Handbook isto survey measure theory with its many different branches and itsrelations with other areas of mathematics. Mostly aggregating many classical branches of measure theory the aim of the Handbook is also to cover new fields, approaches and applications whichsupport the idea of "measure" in a wider sense, e.g. the ninth part of the Handbook. Although chapters are written of surveys in the variousareas they contain many special topics and challengingproblems valuable for experts and rich sources of inspiration.Mathematicians from other areas as well as physicists, computerscientists, engineers and econometrists will find useful results andpowerful methods for their research. The reader may find in theHandbook many close relations to other mathematical areas: realanalysis, probability theory, statistics, ergodic theory,functional analysis, potential theory, topology, set theory,geometry, differential equations, optimization, variationalanalysis, decision making and others. The Handbook is a richsource of relevant references to articles, books and lecturenotes and it contains for the reader's convenience an extensivesubject and author index.

Georg Cantor

Georg Cantor
Author :
Publisher : Princeton University Press
Total Pages : 422
Release :
ISBN-10 : 0691085838
ISBN-13 : 9780691085838
Rating : 4/5 (38 Downloads)

Synopsis Georg Cantor by : Joseph Warren Dauben

One of the greatest revolutions in mathematics occurred when Georg Cantor (1845-1918) promulgated his theory of transfinite sets. This revolution is the subject of Joseph Dauben's important studythe most thorough yet writtenof the philosopher and mathematician who was once called a "corrupter of youth" for an innovation that is now a vital component of elementary school curricula. Set theory has been widely adopted in mathematics and philosophy, but the controversy surrounding it at the turn of the century remains of great interest. Cantor's own faith in his theory was partly theological. His religious beliefs led him to expect paradoxes in any concept of the infinite, and he always retained his belief in the utter veracity of transfinite set theory. Later in his life, he was troubled by recurring attacks of severe depression. Dauben shows that these played an integral part in his understanding and defense of set theory.