Homotopical Topology
Download Homotopical Topology full books in PDF, epub, and Kindle. Read online free Homotopical Topology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Anatoly Fomenko |
Publisher |
: Springer |
Total Pages |
: 635 |
Release |
: 2016-06-24 |
ISBN-10 |
: 9783319234885 |
ISBN-13 |
: 3319234889 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Homotopical Topology by : Anatoly Fomenko
This textbook on algebraic topology updates a popular textbook from the golden era of the Moscow school of I. M. Gelfand. The first English translation, done many decades ago, remains very much in demand, although it has been long out-of-print and is difficult to obtain. Therefore, this updated English edition will be much welcomed by the mathematical community. Distinctive features of this book include: a concise but fully rigorous presentation, supplemented by a plethora of illustrations of a high technical and artistic caliber; a huge number of nontrivial examples and computations done in detail; a deeper and broader treatment of topics in comparison to most beginning books on algebraic topology; an extensive, and very concrete, treatment of the machinery of spectral sequences. The second edition contains an entirely new chapter on K-theory and the Riemann-Roch theorem (after Hirzebruch and Grothendieck).
Author |
: Marcelo Aguilar |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 499 |
Release |
: 2008-02-02 |
ISBN-10 |
: 9780387224893 |
ISBN-13 |
: 0387224890 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Algebraic Topology from a Homotopical Viewpoint by : Marcelo Aguilar
The authors present introductory material in algebraic topology from a novel point of view in using a homotopy-theoretic approach. This carefully written book can be read by any student who knows some topology, providing a useful method to quickly learn this novel homotopy-theoretic point of view of algebraic topology.
Author |
: Anatolij T. Fomenko |
Publisher |
: |
Total Pages |
: 310 |
Release |
: 1986 |
ISBN-10 |
: 0569089980 |
ISBN-13 |
: 9780569089982 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Homotopic Topology by : Anatolij T. Fomenko
Author |
: |
Publisher |
: Univalent Foundations |
Total Pages |
: 484 |
Release |
: |
ISBN-10 |
: |
ISBN-13 |
: |
Rating |
: 4/5 ( Downloads) |
Synopsis Homotopy Type Theory: Univalent Foundations of Mathematics by :
Author |
: Emily Riehl |
Publisher |
: Cambridge University Press |
Total Pages |
: 371 |
Release |
: 2014-05-26 |
ISBN-10 |
: 9781139952637 |
ISBN-13 |
: 1139952633 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Categorical Homotopy Theory by : Emily Riehl
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
Author |
: Martin Arkowitz |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 352 |
Release |
: 2011-07-25 |
ISBN-10 |
: 9781441973290 |
ISBN-13 |
: 144197329X |
Rating |
: 4/5 (90 Downloads) |
Synopsis Introduction to Homotopy Theory by : Martin Arkowitz
This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.
Author |
: Jeffrey Strom |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 862 |
Release |
: 2011-10-19 |
ISBN-10 |
: 9780821852866 |
ISBN-13 |
: 0821852868 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Modern Classical Homotopy Theory by : Jeffrey Strom
The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.
Author |
: J. P. May |
Publisher |
: University of Chicago Press |
Total Pages |
: 544 |
Release |
: 2012-02 |
ISBN-10 |
: 9780226511788 |
ISBN-13 |
: 0226511782 |
Rating |
: 4/5 (88 Downloads) |
Synopsis More Concise Algebraic Topology by : J. P. May
With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.
Author |
: J. P. May |
Publisher |
: University of Chicago Press |
Total Pages |
: 262 |
Release |
: 1999-09 |
ISBN-10 |
: 0226511839 |
ISBN-13 |
: 9780226511832 |
Rating |
: 4/5 (39 Downloads) |
Synopsis A Concise Course in Algebraic Topology by : J. P. May
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Author |
: Hajime Satō |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 144 |
Release |
: 1999 |
ISBN-10 |
: 0821810464 |
ISBN-13 |
: 9780821810460 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Algebraic Topology: An Intuitive Approach by : Hajime Satō
The single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references. Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Möbius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.