Hodge Theory And Complex Algebraic Geometry I
Download Hodge Theory And Complex Algebraic Geometry I full books in PDF, epub, and Kindle. Read online free Hodge Theory And Complex Algebraic Geometry I ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Claire Voisin |
Publisher |
: Cambridge University Press |
Total Pages |
: 334 |
Release |
: 2007-12-20 |
ISBN-10 |
: 0521718015 |
ISBN-13 |
: 9780521718011 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Hodge Theory and Complex Algebraic Geometry I: by : Claire Voisin
This is a modern introduction to Kaehlerian geometry and Hodge structure. Coverage begins with variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory (with the latter being treated in a more theoretical way than is usual in geometry). The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions.
Author |
: Claire Voisin |
Publisher |
: Cambridge University Press |
Total Pages |
: 336 |
Release |
: 2002-12-05 |
ISBN-10 |
: 9781139437691 |
ISBN-13 |
: 1139437690 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Hodge Theory and Complex Algebraic Geometry I: Volume 1 by : Claire Voisin
The first of two volumes offering a modern introduction to Kaehlerian geometry and Hodge structure. The book starts with basic material on complex variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory, the latter being treated in a more theoretical way than is usual in geometry. The author then proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The book culminates with the Hodge decomposition theorem. The meanings of these results are investigated in several directions. Completely self-contained, the book is ideal for students, while its content gives an account of Hodge theory and complex algebraic geometry as has been developed by P. Griffiths and his school, by P. Deligne, and by S. Bloch. The text is complemented by exercises which provide useful results in complex algebraic geometry.
Author |
: Claire Voisin |
Publisher |
: Cambridge University Press |
Total Pages |
: 362 |
Release |
: 2007-12-20 |
ISBN-10 |
: 0521718023 |
ISBN-13 |
: 9780521718028 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Hodge Theory and Complex Algebraic Geometry II: by : Claire Voisin
The second volume of this modern account of Kaehlerian geometry and Hodge theory starts with the topology of families of algebraic varieties. The main results are the generalized Noether-Lefschetz theorems, the generic triviality of the Abel-Jacobi maps, and most importantly, Nori's connectivity theorem, which generalizes the above. The last part deals with the relationships between Hodge theory and algebraic cycles. The text is complemented by exercises offering useful results in complex algebraic geometry. Also available: Volume I 0-521-80260-1 Hardback $60.00 C
Author |
: Donu Arapura |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 326 |
Release |
: 2012-02-15 |
ISBN-10 |
: 9781461418092 |
ISBN-13 |
: 1461418097 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Algebraic Geometry over the Complex Numbers by : Donu Arapura
This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.
Author |
: Daniel Huybrechts |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 336 |
Release |
: 2005 |
ISBN-10 |
: 3540212906 |
ISBN-13 |
: 9783540212904 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Complex Geometry by : Daniel Huybrechts
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Author |
: Mark Green |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 314 |
Release |
: 2013-11-05 |
ISBN-10 |
: 9781470410124 |
ISBN-13 |
: 1470410125 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Hodge Theory, Complex Geometry, and Representation Theory by : Mark Green
This monograph presents topics in Hodge theory and representation theory, two of the most active and important areas in contemporary mathematics. The underlying theme is the use of complex geometry to understand the two subjects and their relationships to one another--an approach that is complementary to what is in the literature. Finite-dimensional representation theory and complex geometry enter via the concept of Hodge representations and Hodge domains. Infinite-dimensional representation theory, specifically the discrete series and their limits, enters through the realization of these representations through complex geometry as pioneered by Schmid, and in the subsequent description of automorphic cohomology. For the latter topic, of particular importance is the recent work of Carayol that potentially introduces a new perspective in arithmetic automorphic representation theory. The present work gives a treatment of Carayol's work, and some extensions of it, set in a general complex geometric framework. Additional subjects include a description of the relationship between limiting mixed Hodge structures and the boundary orbit structure of Hodge domains, a general treatment of the correspondence spaces that are used to construct Penrose transforms and selected other topics from the recent literature. A co-publication of the AMS and CBMS.
Author |
: James Carlson |
Publisher |
: Cambridge University Press |
Total Pages |
: 577 |
Release |
: 2017-08-24 |
ISBN-10 |
: 9781108422628 |
ISBN-13 |
: 1108422624 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Period Mappings and Period Domains by : James Carlson
An introduction to Griffiths' theory of period maps and domains, focused on algebraic, group-theoretic and differential geometric aspects.
Author |
: Matt Kerr |
Publisher |
: Cambridge University Press |
Total Pages |
: 533 |
Release |
: 2016-02-04 |
ISBN-10 |
: 9781107546295 |
ISBN-13 |
: 110754629X |
Rating |
: 4/5 (95 Downloads) |
Synopsis Recent Advances in Hodge Theory by : Matt Kerr
Combines cutting-edge research and expository articles in Hodge theory. An essential reference for graduate students and researchers.
Author |
: Chris A.M. Peters |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 467 |
Release |
: 2008-02-27 |
ISBN-10 |
: 9783540770176 |
ISBN-13 |
: 3540770178 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Mixed Hodge Structures by : Chris A.M. Peters
This is comprehensive basic monograph on mixed Hodge structures. Building up from basic Hodge theory the book explains Delingne's mixed Hodge theory in a detailed fashion. Then both Hain's and Morgan's approaches to mixed Hodge theory related to homotopy theory are sketched. Next comes the relative theory, and then the all encompassing theory of mixed Hodge modules. The book is interlaced with chapters containing applications. Three large appendices complete the book.
Author |
: Mark Green |
Publisher |
: Princeton University Press |
Total Pages |
: 298 |
Release |
: 2012-04-22 |
ISBN-10 |
: 9781400842735 |
ISBN-13 |
: 1400842735 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Mumford-Tate Groups and Domains by : Mark Green
Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject.