Hilberts Tenth Problem An Introduction To Logic Number Theory And Computability
Download Hilberts Tenth Problem An Introduction To Logic Number Theory And Computability full books in PDF, epub, and Kindle. Read online free Hilberts Tenth Problem An Introduction To Logic Number Theory And Computability ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: M. Ram Murty |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 256 |
Release |
: 2019-05-09 |
ISBN-10 |
: 9781470443993 |
ISBN-13 |
: 1470443996 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Hilbert’s Tenth Problem: An Introduction to Logic, Number Theory, and Computability by : M. Ram Murty
Hilbert's tenth problem is one of 23 problems proposed by David Hilbert in 1900 at the International Congress of Mathematicians in Paris. These problems gave focus for the exponential development of mathematical thought over the following century. The tenth problem asked for a general algorithm to determine if a given Diophantine equation has a solution in integers. It was finally resolved in a series of papers written by Julia Robinson, Martin Davis, Hilary Putnam, and finally Yuri Matiyasevich in 1970. They showed that no such algorithm exists. This book is an exposition of this remarkable achievement. Often, the solution to a famous problem involves formidable background. Surprisingly, the solution of Hilbert's tenth problem does not. What is needed is only some elementary number theory and rudimentary logic. In this book, the authors present the complete proof along with the romantic history that goes with it. Along the way, the reader is introduced to Cantor's transfinite numbers, axiomatic set theory, Turing machines, and Gödel's incompleteness theorems. Copious exercises are included at the end of each chapter to guide the student gently on this ascent. For the advanced student, the final chapter highlights recent developments and suggests future directions. The book is suitable for undergraduates and graduate students. It is essentially self-contained.
Author |
: Richard E. Hodel |
Publisher |
: Courier Corporation |
Total Pages |
: 514 |
Release |
: 2013-01-01 |
ISBN-10 |
: 9780486497853 |
ISBN-13 |
: 0486497852 |
Rating |
: 4/5 (53 Downloads) |
Synopsis An Introduction to Mathematical Logic by : Richard E. Hodel
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
Author |
: Alexandra Shlapentokh |
Publisher |
: Cambridge University Press |
Total Pages |
: 342 |
Release |
: 2007 |
ISBN-10 |
: 0521833604 |
ISBN-13 |
: 9780521833608 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Hilbert's Tenth Problem by : Alexandra Shlapentokh
Publisher description
Author |
: I︠U︡riĭ V. Matii︠a︡sevich |
Publisher |
: MIT Press |
Total Pages |
: 296 |
Release |
: 1993 |
ISBN-10 |
: 0262132958 |
ISBN-13 |
: 9780262132954 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Hilbert's Tenth Problem by : I︠U︡riĭ V. Matii︠a︡sevich
This book presents the full, self-contained negative solution of Hilbert's 10th problem.
Author |
: Jeremy Gray |
Publisher |
: Oxford University Press, USA |
Total Pages |
: 340 |
Release |
: 2000 |
ISBN-10 |
: 0198506511 |
ISBN-13 |
: 9780198506515 |
Rating |
: 4/5 (11 Downloads) |
Synopsis The Hilbert Challenge by : Jeremy Gray
David Hilbert was arguably the leading mathematician of his generation. He was among the few mathematicians who could reshape mathematics, and was able to because he brought together an impressive technical power and mastery of detail with a vision of where the subject was going and how it should get there. This was the unique combination which he brought to the setting of his famous 23 Problems. Few problems in mathematics have the status of those posed by David Hilbert in 1900. Mathematicians have made their reputations by solving individual ones such as Fermat's last theorem, and several remain unsolved including the Riemann hypotheses, which has eluded all the great minds of this century. A hundred years on, it is timely to take a fresh look at the problems, the man who set them, and the reasons for their lasting impact on the mathematics of the twentieth century. In this fascinating new book, Jeremy Gray and David Rowe consider what has made this the pre-eminent collection of problems in mathematics, what they tell us about what drives mathematicians, and the nature of reputation, influence and power in the world of modern mathematics. The book is written in a clear and lively manner and will appeal both to the general reader with an interest in mathematics and to mathematicians themselves.
Author |
: Peter G. Hinman |
Publisher |
: CRC Press |
Total Pages |
: 895 |
Release |
: 2018-10-08 |
ISBN-10 |
: 9781439864272 |
ISBN-13 |
: 1439864276 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Fundamentals of Mathematical Logic by : Peter G. Hinman
This introductory graduate text covers modern mathematical logic from propositional, first-order and infinitary logic and Gödel's Incompleteness Theorems to extensive introductions to set theory, model theory and recursion (computability) theory. Based on the author's more than 35 years of teaching experience, the book develops students' intuition by presenting complex ideas in the simplest context for which they make sense. The book is appropriate for use as a classroom text, for self-study, and as a reference on the state of modern logic.
Author |
: Elliot Mendelsohn |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 351 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461572886 |
ISBN-13 |
: 1461572886 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Introduction to Mathematical Logic by : Elliot Mendelsohn
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Author |
: David Marker |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 342 |
Release |
: 2006-04-06 |
ISBN-10 |
: 9780387227344 |
ISBN-13 |
: 0387227342 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Model Theory : An Introduction by : David Marker
Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
Author |
: Michal Walicki |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 302 |
Release |
: 2016-08-12 |
ISBN-10 |
: 9789814719988 |
ISBN-13 |
: 9814719986 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Introduction To Mathematical Logic (Extended Edition) by : Michal Walicki
This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first order logic — their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules — of a high, though often neglected, pedagogical value — aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.This revised edition contains also, besides many new exercises, a new chapter on semantic paradoxes. An equivalence of logical and graphical representations allows us to see vicious circularity as the odd cycles in the graphical representation and can be used as a simple tool for diagnosing paradoxes in natural discourse.
Author |
: Alonzo Church |
Publisher |
: Princeton University Press |
Total Pages |
: 396 |
Release |
: 1996 |
ISBN-10 |
: 0691029067 |
ISBN-13 |
: 9780691029061 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Introduction to Mathematical Logic by : Alonzo Church
A classic account of mathematical logic from a pioneering giant in the field Logic is sometimes called the foundation of mathematics: the logician studies the kinds of reasoning used in the individual steps of a proof. Alonzo Church was a pioneer in the field of mathematical logic, whose contributions to number theory and the theories of algorithms and computability laid the theoretical foundations of computer science. His first Princeton book, The Calculi of Lambda-Conversion (1941), established an invaluable tool that computer scientists still use today. Even beyond the accomplishment of that book, however, his second Princeton book, Introduction to Mathematical Logic, defined its subject for a generation. Originally published in Princeton's Annals of Mathematics Studies series, this book was revised in 1956 and reprinted a third time, in 1996, in the Princeton Landmarks in Mathematics series. Although new results in mathematical logic have been developed and other textbooks have been published, it remains, sixty years later, a basic source for understanding formal logic. Church was one of the principal founders of the Association for Symbolic Logic; he founded the Journal of Symbolic Logic in 1936 and remained an editor until 1979. At his death in 1995, Church was still regarded as the greatest mathematical logician in the world.