Higher Operads Higher Categories
Download Higher Operads Higher Categories full books in PDF, epub, and Kindle. Read online free Higher Operads Higher Categories ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Tom Leinster |
Publisher |
: Cambridge University Press |
Total Pages |
: 451 |
Release |
: 2004-07-22 |
ISBN-10 |
: 9780521532150 |
ISBN-13 |
: 0521532159 |
Rating |
: 4/5 (50 Downloads) |
Synopsis Higher Operads, Higher Categories by : Tom Leinster
Foundations of higher dimensional category theory for graduate students and researchers in mathematics and mathematical physics.
Author |
: Martin Markl |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 362 |
Release |
: 2002 |
ISBN-10 |
: 9780821843628 |
ISBN-13 |
: 0821843621 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Operads in Algebra, Topology and Physics by : Martin Markl
Operads are mathematical devices which describe algebraic structures of many varieties and in various categories. From their beginnings in the 1960s, they have developed to encompass such areas as combinatorics, knot theory, moduli spaces, string field theory and deformation quantization.
Author |
: Tom Leinster |
Publisher |
: Cambridge University Press |
Total Pages |
: 193 |
Release |
: 2014-07-24 |
ISBN-10 |
: 9781107044241 |
ISBN-13 |
: 1107044243 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Basic Category Theory by : Tom Leinster
A short introduction ideal for students learning category theory for the first time.
Author |
: Saunders Mac Lane |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 320 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9781475747218 |
ISBN-13 |
: 1475747217 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Categories for the Working Mathematician by : Saunders Mac Lane
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Author |
: John C. Baez |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 292 |
Release |
: 2009-09-24 |
ISBN-10 |
: 9781441915368 |
ISBN-13 |
: 1441915362 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Towards Higher Categories by : John C. Baez
The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development.
Author |
: Donald Yau |
Publisher |
: World Scientific |
Total Pages |
: 486 |
Release |
: 2021-12-02 |
ISBN-10 |
: 9789811250941 |
ISBN-13 |
: 9811250944 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Infinity Operads And Monoidal Categories With Group Equivariance by : Donald Yau
This monograph provides a coherent development of operads, infinity operads, and monoidal categories, equipped with equivariant structures encoded by an action operad. A group operad is a planar operad with an action operad equivariant structure. In the first three parts of this monograph, we establish a foundation for group operads and for their higher coherent analogues called infinity group operads. Examples include planar, symmetric, braided, ribbon, and cactus operads, and their infinity analogues. For example, with the tools developed here, we observe that the coherent ribbon nerve of the universal cover of the framed little 2-disc operad is an infinity ribbon operad.In Part 4 we define general monoidal categories equipped with an action operad equivariant structure and provide a unifying treatment of coherence and strictification for them. Examples of such monoidal categories include symmetric, braided, ribbon, and coboundary monoidal categories, which naturally arise in the representation theory of quantum groups and of coboundary Hopf algebras and in the theory of crystals of finite dimensional complex reductive Lie algebras.
Author |
: Marco Grandis |
Publisher |
: World Scientific |
Total Pages |
: 535 |
Release |
: 2019-09-09 |
ISBN-10 |
: 9789811205125 |
ISBN-13 |
: 9811205124 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Higher Dimensional Categories: From Double To Multiple Categories by : Marco Grandis
The study of higher dimensional categories has mostly been developed in the globular form of 2-categories, n-categories, omega-categories and their weak versions. Here we study a different form: double categories, n-tuple categories and multiple categories, with their weak and lax versions.We want to show the advantages of this form for the theory of adjunctions and limits. Furthermore, this form is much simpler in higher dimension, starting with dimension three where weak 3-categories (also called tricategories) are already quite complicated, much more than weak or lax triple categories.This book can be used as a textbook for graduate and postgraduate studies, and as a basis for research. Notions are presented in a 'concrete' way, with examples and exercises; the latter are endowed with a solution or hints. Part I, devoted to double categories, starts at basic category theory and is kept at a relatively simple level. Part II, on multiple categories, can be used independently by a reader acquainted with 2-dimensional categories.
Author |
: Birgit Richter |
Publisher |
: Cambridge University Press |
Total Pages |
: 402 |
Release |
: 2020-04-16 |
ISBN-10 |
: 9781108847629 |
ISBN-13 |
: 1108847625 |
Rating |
: 4/5 (29 Downloads) |
Synopsis From Categories to Homotopy Theory by : Birgit Richter
Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.
Author |
: Carlos Simpson |
Publisher |
: Cambridge University Press |
Total Pages |
: 653 |
Release |
: 2011-10-20 |
ISBN-10 |
: 9781139502191 |
ISBN-13 |
: 1139502190 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Homotopy Theory of Higher Categories by : Carlos Simpson
The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.
Author |
: Benoit Fresse |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 581 |
Release |
: 2017-04-21 |
ISBN-10 |
: 9781470434816 |
ISBN-13 |
: 1470434814 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Homotopy of Operads and Grothendieck-Teichmuller Groups by : Benoit Fresse
The Grothendieck–Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck–Teichmüller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of a rationalization process, the Malcev completion, for groups and groupoids. Most definitions are carefully reviewed in the book; it requires minimal prerequisites to be accessible to a broad readership of graduate students and researchers interested in the applications of operads.