Combustion and Heat Transfer in Gas Turbine Systems

Combustion and Heat Transfer in Gas Turbine Systems
Author :
Publisher : Elsevier
Total Pages : 417
Release :
ISBN-10 : 9781483151793
ISBN-13 : 1483151794
Rating : 4/5 (93 Downloads)

Synopsis Combustion and Heat Transfer in Gas Turbine Systems by : E. R. Norster

Combustion and Heat Transfer in Gas Turbine Systems is a compilation of papers from the Proceedings of an International Propulsion Symposium held at the College of Aeronautics, Cranfield in April 1969. This compilation deals with research done by academic and scientific institutions and of industrial organizations, with some research papers covering atomization, fuels, and high-temperature materials. One paper describes the combustion system of the Concorde engine used in commercial flights, temperature of metal parts, and some design modifications to increase the mechanical life of the combustion system. Another paper discusses the evolution of the RB 162 combustion system that is used in the vertical takeoff and landing aircrafts. The RB 162 has many design features of the earlier single reversal chamber and differs in only one or two points. The book then notes the necessity of a plenum chamber burning to further development of supersonic engines and flight. One paper also proposes an alternative theory to the traditional ignition theory of altitude relighting such as those developed by Lewis and von Elbe. Another paper reposts on some observations made of the atomizing characteristics of air-blast atomizers and proposes simple changes to improve the performance of the atomizer by prefilming and allowing air to both sides of the fuel. This compilation will prove very helpful for aeronautical engineers, aviation designers, physicists, students of engineering, and readers who are interested in the design and development of jet engines and supersonic aircrafts.

Heat Transfer in Gas Turbines

Heat Transfer in Gas Turbines
Author :
Publisher : Witpress
Total Pages : 544
Release :
ISBN-10 : UOM:39015054381531
ISBN-13 :
Rating : 4/5 (31 Downloads)

Synopsis Heat Transfer in Gas Turbines by : Bengt Sundén

This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Gas Turbine Heat Transfer and Cooling Technology, Second Edition

Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Author :
Publisher : CRC Press
Total Pages : 892
Release :
ISBN-10 : 9781439855683
ISBN-13 : 1439855684
Rating : 4/5 (83 Downloads)

Synopsis Gas Turbine Heat Transfer and Cooling Technology, Second Edition by : Je-Chin Han

A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Gas Turbine Heat Transfer and Cooling Technology

Gas Turbine Heat Transfer and Cooling Technology
Author :
Publisher : Taylor & Francis
Total Pages : 865
Release :
ISBN-10 : 9781466564909
ISBN-13 : 1466564903
Rating : 4/5 (09 Downloads)

Synopsis Gas Turbine Heat Transfer and Cooling Technology by : Je-Chin Han

A comprehensive reference for engineers and researchers, this second edition focuses on gas turbine heat transfer issues and their associated cooling technologies for aircraft and land-based gas turbines. It provides information on state-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling schemes. The book also offers updated experimental methods for gas turbine heat transfer and cooling research, as well as advanced computational models for gas turbine heat transfer and cooling performance predictions. The authors provide suggestions for future research within this technology and includes 800 illustrations to help clarify concepts and instruction.

Gas Turbines

Gas Turbines
Author :
Publisher : Cambridge University Press
Total Pages : 375
Release :
ISBN-10 : 9781107170094
ISBN-13 : 1107170095
Rating : 4/5 (94 Downloads)

Synopsis Gas Turbines by : Bijay Sultanian

This physics-first, design-oriented textbook explains concepts of gas turbine secondary flows, reduced-order modeling methods, and 3-D CFD.

Heat Transfer in Gas Turbine Systems

Heat Transfer in Gas Turbine Systems
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1573313289
ISBN-13 : 9781573313285
Rating : 4/5 (89 Downloads)

Synopsis Heat Transfer in Gas Turbine Systems by : Richard J. Goldstein

Explores recent developments in heat transfer and thermal control applied to modern high-temperature gas turbine systems. It examines experimental results and techniques computational studies and methods and design recommendations. Aspects of heat transfer in rotating machinery are studied as well as thermal aspects of other sections of the turbine (e.g. the compressor). Proceedings of an August 2000 conference.

Gas Turbines for Electric Power Generation

Gas Turbines for Electric Power Generation
Author :
Publisher : Cambridge University Press
Total Pages : 735
Release :
ISBN-10 : 9781108416658
ISBN-13 : 1108416659
Rating : 4/5 (58 Downloads)

Synopsis Gas Turbines for Electric Power Generation by : S. Can Gülen

Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.

Gas Turbine Blade Cooling

Gas Turbine Blade Cooling
Author :
Publisher : SAE International
Total Pages : 238
Release :
ISBN-10 : 9780768095029
ISBN-13 : 0768095026
Rating : 4/5 (29 Downloads)

Synopsis Gas Turbine Blade Cooling by : Chaitanya D Ghodke

Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Gas Turbine Design, Components and System Design Integration

Gas Turbine Design, Components and System Design Integration
Author :
Publisher : Springer
Total Pages : 522
Release :
ISBN-10 : 9783319583785
ISBN-13 : 3319583786
Rating : 4/5 (85 Downloads)

Synopsis Gas Turbine Design, Components and System Design Integration by : Meinhard T. Schobeiri

This book written by a world-renowned expert with more than forty years of active gas turbine R&D experience comprehensively treats the design of gas turbine components and their integration into a complete system. Unlike many currently available gas turbine handbooks that provide the reader with an overview without in-depth treatment of the subject, the current book is concentrated on a detailed aero-thermodynamics, design and off-deign performance aspects of individual components as well as the system integration and its dynamic operation.This new book provides practicing gas turbine designers and young engineers working in the industry with design material that the manufacturers would keep proprietary. The book is also intended to provide instructors of turbomachinery courses around the world with a powerful tool to assign gas turbine components as project and individual modules that are integrated into a complete system. Quoting many statements by the gas turbine industry professionals, the young engineers graduated from the turbomachinery courses offered by the author, had the competency of engineers equivalent to three to four years of industrial experience.

Gas Turbine Engineering Handbook

Gas Turbine Engineering Handbook
Author :
Publisher : Elsevier
Total Pages : 956
Release :
ISBN-10 : 9780080456898
ISBN-13 : 0080456898
Rating : 4/5 (98 Downloads)

Synopsis Gas Turbine Engineering Handbook by : Meherwan P. Boyce

The Gas Turbine Engineering Handbook has been the standard for engineers involved in the design, selection, and operation of gas turbines. This revision includes new case histories, the latest techniques, and new designs to comply with recently passed legislation. By keeping the book up to date with new, emerging topics, Boyce ensures that this book will remain the standard and most widely used book in this field. The new Third Edition of the Gas Turbine Engineering Hand Book updates the book to cover the new generation of Advanced gas Turbines. It examines the benefit and some of the major problems that have been encountered by these new turbines. The book keeps abreast of the environmental changes and the industries answer to these new regulations. A new chapter on case histories has been added to enable the engineer in the field to keep abreast of problems that are being encountered and the solutions that have resulted in solving them. - Comprehensive treatment of Gas Turbines from Design to Operation and Maintenance. In depth treatment of Compressors with emphasis on surge, rotating stall, and choke; Combustors with emphasis on Dry Low NOx Combustors; and Turbines with emphasis on Metallurgy and new cooling schemes. An excellent introductory book for the student and field engineers - A special maintenance section dealing with the advanced gas turbines, and special diagnostic charts have been provided that will enable the reader to troubleshoot problems he encounters in the field - The third edition consists of many Case Histories of Gas Turbine problems. This should enable the field engineer to avoid some of these same generic problems