Hands On Neural Networks With Tensorflow 20
Download Hands On Neural Networks With Tensorflow 20 full books in PDF, epub, and Kindle. Read online free Hands On Neural Networks With Tensorflow 20 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Paolo Galeone |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 346 |
Release |
: 2019-09-18 |
ISBN-10 |
: 9781789613797 |
ISBN-13 |
: 1789613795 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Hands-On Neural Networks with TensorFlow 2.0 by : Paolo Galeone
A comprehensive guide to developing neural network-based solutions using TensorFlow 2.0 Key FeaturesUnderstand the basics of machine learning and discover the power of neural networks and deep learningExplore the structure of the TensorFlow framework and understand how to transition to TF 2.0Solve any deep learning problem by developing neural network-based solutions using TF 2.0Book Description TensorFlow, the most popular and widely used machine learning framework, has made it possible for almost anyone to develop machine learning solutions with ease. With TensorFlow (TF) 2.0, you'll explore a revamped framework structure, offering a wide variety of new features aimed at improving productivity and ease of use for developers. This book covers machine learning with a focus on developing neural network-based solutions. You'll start by getting familiar with the concepts and techniques required to build solutions to deep learning problems. As you advance, you’ll learn how to create classifiers, build object detection and semantic segmentation networks, train generative models, and speed up the development process using TF 2.0 tools such as TensorFlow Datasets and TensorFlow Hub. By the end of this TensorFlow book, you'll be ready to solve any machine learning problem by developing solutions using TF 2.0 and putting them into production. What you will learnGrasp machine learning and neural network techniques to solve challenging tasksApply the new features of TF 2.0 to speed up developmentUse TensorFlow Datasets (tfds) and the tf.data API to build high-efficiency data input pipelinesPerform transfer learning and fine-tuning with TensorFlow HubDefine and train networks to solve object detection and semantic segmentation problemsTrain Generative Adversarial Networks (GANs) to generate images and data distributionsUse the SavedModel file format to put a model, or a generic computational graph, into productionWho this book is for If you're a developer who wants to get started with machine learning and TensorFlow, or a data scientist interested in developing neural network solutions in TF 2.0, this book is for you. Experienced machine learning engineers who want to master the new features of the TensorFlow framework will also find this book useful. Basic knowledge of calculus and a strong understanding of Python programming will help you grasp the topics covered in this book.
Author |
: Iffat Zafar |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 264 |
Release |
: 2018-08-28 |
ISBN-10 |
: 9781789132823 |
ISBN-13 |
: 1789132827 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Hands-On Convolutional Neural Networks with TensorFlow by : Iffat Zafar
Learn how to apply TensorFlow to a wide range of deep learning and Machine Learning problems with this practical guide on training CNNs for image classification, image recognition, object detection and many computer vision challenges. Key Features Learn the fundamentals of Convolutional Neural Networks Harness Python and Tensorflow to train CNNs Build scalable deep learning models that can process millions of items Book Description Convolutional Neural Networks (CNN) are one of the most popular architectures used in computer vision apps. This book is an introduction to CNNs through solving real-world problems in deep learning while teaching you their implementation in popular Python library - TensorFlow. By the end of the book, you will be training CNNs in no time! We start with an overview of popular machine learning and deep learning models, and then get you set up with a TensorFlow development environment. This environment is the basis for implementing and training deep learning models in later chapters. Then, you will use Convolutional Neural Networks to work on problems such as image classification, object detection, and semantic segmentation. After that, you will use transfer learning to see how these models can solve other deep learning problems. You will also get a taste of implementing generative models such as autoencoders and generative adversarial networks. Later on, you will see useful tips on machine learning best practices and troubleshooting. Finally, you will learn how to apply your models on large datasets of millions of images. What you will learn Train machine learning models with TensorFlow Create systems that can evolve and scale during their life cycle Use CNNs in image recognition and classification Use TensorFlow for building deep learning models Train popular deep learning models Fine-tune a neural network to improve the quality of results with transfer learning Build TensorFlow models that can scale to large datasets and systems Who this book is for This book is for Software Engineers, Data Scientists, or Machine Learning practitioners who want to use CNNs for solving real-world problems. Knowledge of basic machine learning concepts, linear algebra and Python will help.
Author |
: Dan Van Boxel |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 174 |
Release |
: 2017-07-31 |
ISBN-10 |
: 9781787125827 |
ISBN-13 |
: 1787125823 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Hands-On Deep Learning with TensorFlow by : Dan Van Boxel
This book is your guide to exploring the possibilities in the field of deep learning, making use of Google's TensorFlow. You will learn about convolutional neural networks, and logistic regression while training models for deep learning to gain key insights into your data. About This Book Explore various possibilities with deep learning and gain amazing insights from data using Google's brainchild-- TensorFlow Want to learn what more can be done with deep learning? Explore various neural networks with the help of this comprehensive guide Rich in concepts, advanced guide on deep learning that will give you background to innovate in your environment Who This Book Is For If you are a data scientist who performs machine learning on a regular basis, are familiar with deep neural networks, and now want to gain expertise in working with convoluted neural networks, then this book is for you. Some familiarity with C++ or Python is assumed. What You Will Learn Set up your computing environment and install TensorFlow Build simple TensorFlow graphs for everyday computations Apply logistic regression for classification with TensorFlow Design and train a multilayer neural network with TensorFlow Intuitively understand convolutional neural networks for image recognition Bootstrap a neural network from simple to more accurate models See how to use TensorFlow with other types of networks Program networks with SciKit-Flow, a high-level interface to TensorFlow In Detail Dan Van Boxel's Deep Learning with TensorFlow is based on Dan's best-selling TensorFlow video course. With deep learning going mainstream, making sense of data and getting accurate results using deep networks is possible. Dan Van Boxel will be your guide to exploring the possibilities with deep learning; he will enable you to understand data like never before. With the efficiency and simplicity of TensorFlow, you will be able to process your data and gain insights that will change how you look at data. With Dan's guidance, you will dig deeper into the hidden layers of abstraction using raw data. Dan then shows you various complex algorithms for deep learning and various examples that use these deep neural networks. You will also learn how to train your machine to craft new features to make sense of deeper layers of data. In this book, Dan shares his knowledge across topics such as logistic regression, convolutional neural networks, recurrent neural networks, training deep networks, and high level interfaces. With the help of novel practical examples, you will become an ace at advanced multilayer networks, image recognition, and beyond. Style and Approach This book is your go-to guide to becoming a deep learning expert in your organization. Dan helps you evaluate common and not-so-common deep neural networks with the help of insightful examples that you can relate to, and show how they can be exploited in the real world with complex raw data.
Author |
: Antonio Gulli |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 647 |
Release |
: 2019-12-27 |
ISBN-10 |
: 9781838827724 |
ISBN-13 |
: 1838827722 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Deep Learning with TensorFlow 2 and Keras by : Antonio Gulli
Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices Key FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook Description Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML. What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is for This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.
Author |
: Aurélien Géron |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 851 |
Release |
: 2019-09-05 |
ISBN-10 |
: 9781492032595 |
ISBN-13 |
: 149203259X |
Rating |
: 4/5 (95 Downloads) |
Synopsis Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by : Aurélien Géron
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
Author |
: Will Ballard |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 92 |
Release |
: 2018-07-31 |
ISBN-10 |
: 9781789532517 |
ISBN-13 |
: 1789532515 |
Rating |
: 4/5 (17 Downloads) |
Synopsis Hands-On Deep Learning for Images with TensorFlow by : Will Ballard
Explore TensorFlow's capabilities to perform efficient deep learning on images Key Features Discover image processing for machine vision Build an effective image classification system using the power of CNNs Leverage TensorFlow’s capabilities to perform efficient deep learning Book Description TensorFlow is Google’s popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks. Hands-On Deep Learning for Images with TensorFlow shows you the practical implementations of real-world projects, teaching you how to leverage TensorFlow’s capabilities to perform efficient image processing using the power of deep learning. With the help of this book, you will get to grips with the different paradigms of performing deep learning such as deep neural nets and convolutional neural networks, followed by understanding how they can be implemented using TensorFlow. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow and Keras. What you will learn Build machine learning models particularly focused on the MNIST digits Work with Docker and Keras to build an image classifier Understand natural language models to process text and images Prepare your dataset for machine learning Create classical, convolutional, and deep neural networks Create a RESTful image classification server Who this book is for Hands-On Deep Learning for Images with TensorFlow is for you if you are an application developer, data scientist, or machine learning practitioner looking to integrate machine learning into application software and master deep learning by implementing practical projects in TensorFlow. Knowledge of Python programming and basics of deep learning are required to get the best out of this book.
Author |
: Benjamin Planche |
Publisher |
: |
Total Pages |
: 372 |
Release |
: 2019 |
ISBN-10 |
: 1788830644 |
ISBN-13 |
: 9781788830645 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Hands-on Computer Vision with TensorFlow 2 by : Benjamin Planche
Computer vision is achieving a new frontier of capabilities in fields like health, automobile or robotics. This book explores TensorFlow 2, Google's open-source AI framework, and teaches how to leverage deep neural networks for visual tasks. It will help you acquire the insight and skills to be a part of the exciting advances in computer vision.
Author |
: Soon Yau Cheong |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 306 |
Release |
: 2020-12-24 |
ISBN-10 |
: 9781838821104 |
ISBN-13 |
: 1838821104 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Hands-On Image Generation with TensorFlow by : Soon Yau Cheong
Implement various state-of-the-art architectures, such as GANs and autoencoders, for image generation using TensorFlow 2.x from scratch Key FeaturesUnderstand the different architectures for image generation, including autoencoders and GANsBuild models that can edit an image of your face, turn photos into paintings, and generate photorealistic imagesDiscover how you can build deep neural networks with advanced TensorFlow 2.x featuresBook Description The emerging field of Generative Adversarial Networks (GANs) has made it possible to generate indistinguishable images from existing datasets. With this hands-on book, you’ll not only develop image generation skills but also gain a solid understanding of the underlying principles. Starting with an introduction to the fundamentals of image generation using TensorFlow, this book covers Variational Autoencoders (VAEs) and GANs. You’ll discover how to build models for different applications as you get to grips with performing face swaps using deepfakes, neural style transfer, image-to-image translation, turning simple images into photorealistic images, and much more. You’ll also understand how and why to construct state-of-the-art deep neural networks using advanced techniques such as spectral normalization and self-attention layer before working with advanced models for face generation and editing. You'll also be introduced to photo restoration, text-to-image synthesis, video retargeting, and neural rendering. Throughout the book, you’ll learn to implement models from scratch in TensorFlow 2.x, including PixelCNN, VAE, DCGAN, WGAN, pix2pix, CycleGAN, StyleGAN, GauGAN, and BigGAN. By the end of this book, you'll be well versed in TensorFlow and be able to implement image generative technologies confidently. What you will learnTrain on face datasets and use them to explore latent spaces for editing new facesGet to grips with swapping faces with deepfakesPerform style transfer to convert a photo into a paintingBuild and train pix2pix, CycleGAN, and BicycleGAN for image-to-image translationUse iGAN to understand manifold interpolation and GauGAN to turn simple images into photorealistic imagesBecome well versed in attention generative models such as SAGAN and BigGANGenerate high-resolution photos with Progressive GAN and StyleGANWho this book is for The Hands-On Image Generation with TensorFlow book is for deep learning engineers, practitioners, and researchers who have basic knowledge of convolutional neural networks and want to learn various image generation techniques using TensorFlow 2.x. You’ll also find this book useful if you are an image processing professional or computer vision engineer looking to explore state-of-the-art architectures to improve and enhance images and videos. Knowledge of Python and TensorFlow will help you to get the best out of this book.
Author |
: Leonardo De Marchi |
Publisher |
: |
Total Pages |
: 280 |
Release |
: 2019-05-30 |
ISBN-10 |
: 1788992598 |
ISBN-13 |
: 9781788992596 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Hands-On Neural Networks by : Leonardo De Marchi
Design and create neural networks with deep learning and artificial intelligence principles using OpenAI Gym, TensorFlow, and Keras Key Features Explore neural network architecture and understand how it functions Learn algorithms to solve common problems using back propagation and perceptrons Understand how to apply neural networks to applications with the help of useful illustrations Book Description Neural networks play a very important role in deep learning and artificial intelligence (AI), with applications in a wide variety of domains, right from medical diagnosis, to financial forecasting, and even machine diagnostics. Hands-On Neural Networks is designed to guide you through learning about neural networks in a practical way. The book will get you started by giving you a brief introduction to perceptron networks. You will then gain insights into machine learning and also understand what the future of AI could look like. Next, you will study how embeddings can be used to process textual data and the role of long short-term memory networks (LSTMs) in helping you solve common natural language processing (NLP) problems. The later chapters will demonstrate how you can implement advanced concepts including transfer learning, generative adversarial networks (GANs), autoencoders, and reinforcement learning. Finally, you can look forward to further content on the latest advancements in the field of neural networks. By the end of this book, you will have the skills you need to build, train, and optimize your own neural network model that can be used to provide predictable solutions. What you will learn Learn how to train a network by using backpropagation Discover how to load and transform images for use in neural networks Study how neural networks can be applied to a varied set of applications Solve common challenges faced in neural network development Understand the transfer learning concept to solve tasks using Keras and Visual Geometry Group (VGG) network Get up to speed with advanced and complex deep learning concepts like LSTMs and NLP Explore innovative algorithms like GANs and deep reinforcement learning Who this book is for If you are interested in artificial intelligence and deep learning and want to further your skills, then this intermediate-level book is for you. Some knowledge of statistics will help you get the most out of this book.
Author |
: Niloy Purkait |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 450 |
Release |
: 2019-03-30 |
ISBN-10 |
: 9781789533347 |
ISBN-13 |
: 1789533341 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Hands-On Neural Networks with Keras by : Niloy Purkait
Your one-stop guide to learning and implementing artificial neural networks with Keras effectively Key FeaturesDesign and create neural network architectures on different domains using KerasIntegrate neural network models in your applications using this highly practical guideGet ready for the future of neural networks through transfer learning and predicting multi network modelsBook Description Neural networks are used to solve a wide range of problems in different areas of AI and deep learning. Hands-On Neural Networks with Keras will start with teaching you about the core concepts of neural networks. You will delve into combining different neural network models and work with real-world use cases, including computer vision, natural language understanding, synthetic data generation, and many more. Moving on, you will become well versed with convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, autoencoders, and generative adversarial networks (GANs) using real-world training datasets. We will examine how to use CNNs for image recognition, how to use reinforcement learning agents, and many more. We will dive into the specific architectures of various networks and then implement each of them in a hands-on manner using industry-grade frameworks. By the end of this book, you will be highly familiar with all prominent deep learning models and frameworks, and the options you have when applying deep learning to real-world scenarios and embedding artificial intelligence as the core fabric of your organization. What you will learnUnderstand the fundamental nature and workflow of predictive data modelingExplore how different types of visual and linguistic signals are processed by neural networksDive into the mathematical and statistical ideas behind how networks learn from dataDesign and implement various neural networks such as CNNs, LSTMs, and GANsUse different architectures to tackle cognitive tasks and embed intelligence in systemsLearn how to generate synthetic data and use augmentation strategies to improve your modelsStay on top of the latest academic and commercial developments in the field of AIWho this book is for This book is for machine learning practitioners, deep learning researchers and AI enthusiasts who are looking to get well versed with different neural network architecture using Keras. Working knowledge of Python programming language is mandatory.