Handbook of Metaheuristics

Handbook of Metaheuristics
Author :
Publisher : Springer
Total Pages : 611
Release :
ISBN-10 : 9783319910864
ISBN-13 : 3319910868
Rating : 4/5 (64 Downloads)

Synopsis Handbook of Metaheuristics by : Michel Gendreau

The third edition of this handbook is designed to provide a broad coverage of the concepts, implementations, and applications in metaheuristics. The book’s chapters serve as stand-alone presentations giving both the necessary underpinnings as well as practical guides for implementation. The nature of metaheuristics invites an analyst to modify basic methods in response to problem characteristics, past experiences, and personal preferences, and the chapters in this handbook are designed to facilitate this process as well. This new edition has been fully revised and features new chapters on swarm intelligence and automated design of metaheuristics from flexible algorithm frameworks. The authors who have contributed to this volume represent leading figures from the metaheuristic community and are responsible for pioneering contributions to the fields they write about. Their collective work has significantly enriched the field of optimization in general and combinatorial optimization in particular.Metaheuristics are solution methods that orchestrate an interaction between local improvement procedures and higher level strategies to create a process capable of escaping from local optima and performing a robust search of a solution space. In addition, many new and exciting developments and extensions have been observed in the last few years. Hybrids of metaheuristics with other optimization techniques, like branch-and-bound, mathematical programming or constraint programming are also increasingly popular. On the front of applications, metaheuristics are now used to find high-quality solutions to an ever-growing number of complex, ill-defined real-world problems, in particular combinatorial ones. This handbook should continue to be a great reference for researchers, graduate students, as well as practitioners interested in metaheuristics.

Handbook of Heuristics

Handbook of Heuristics
Author :
Publisher : Springer
Total Pages : 3000
Release :
ISBN-10 : 3319071238
ISBN-13 : 9783319071237
Rating : 4/5 (38 Downloads)

Synopsis Handbook of Heuristics by : Rafael Martí

Heuristics are strategies using readily accessible, loosely applicable information to control problem solving. Algorithms, for example, are a type of heuristic. By contrast, Metaheuristics are methods used to design Heuristics and may coordinate the usage of several Heuristics toward the formulation of a single method. GRASP (Greedy Randomized Adaptive Search Procedures) is an example of a Metaheuristic. To the layman, heuristics may be thought of as ‘rules of thumb’ but despite its imprecision, heuristics is a very rich field that refers to experience-based techniques for problem-solving, learning, and discovery. Any given solution/heuristic is not guaranteed to be optimal but heuristic methodologies are used to speed up the process of finding satisfactory solutions where optimal solutions are impractical. The introduction to this Handbook provides an overview of the history of Heuristics along with main issues regarding the methodologies covered. This is followed by Chapters containing various examples of local searches, search strategies and Metaheuristics, leading to an analyses of Heuristics and search algorithms. The reference concludes with numerous illustrations of the highly applicable nature and implementation of Heuristics in our daily life. Each chapter of this work includes an abstract/introduction with a short description of the methodology. Key words are also necessary as part of top-matter to each chapter to enable maximum search engine optimization. Next, chapters will include discussion of the adaptation of this methodology to solve a difficult optimization problem, and experiments on a set of representative problems.

Handbook of Heuristics

Handbook of Heuristics
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 1787852296
ISBN-13 : 9781787852297
Rating : 4/5 (96 Downloads)

Synopsis Handbook of Heuristics by : Rafael Cunquero Martí

Heuristics are strategies using readily accessible, loosely applicable information to control problem solving. Algorithms, for example, are a type of heuristic. By contrast, Metaheuristics are methods used to design Heuristics and may coordinate the usage of several Heuristics toward the formulation of a single method.

Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance

Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance
Author :
Publisher : IGI Global
Total Pages : 735
Release :
ISBN-10 : 9781466620872
ISBN-13 : 1466620870
Rating : 4/5 (72 Downloads)

Synopsis Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance by : Vasant, Pandian M.

Optimization techniques have developed into a significant area concerning industrial, economics, business, and financial systems. With the development of engineering and financial systems, modern optimization has played an important role in service-centered operations and as such has attracted more attention to this field. Meta-heuristic hybrid optimization is a newly development mathematical framework based optimization technique. Designed by logicians, engineers, analysts, and many more, this technique aims to study the complexity of algorithms and problems. Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance explores the emerging study of meta-heuristics optimization algorithms and methods and their role in innovated real world practical applications. This book is a collection of research on the areas of meta-heuristics optimization algorithms in engineering, business, economics, and finance and aims to be a comprehensive reference for decision makers, managers, engineers, researchers, scientists, financiers, and economists as well as industrialists.

Heuristics and Biases

Heuristics and Biases
Author :
Publisher : Cambridge University Press
Total Pages : 884
Release :
ISBN-10 : 0521796792
ISBN-13 : 9780521796798
Rating : 4/5 (92 Downloads)

Synopsis Heuristics and Biases by : Thomas Gilovich

This book, first published in 2002, compiles psychologists' best attempts to answer important questions about intuitive judgment.

Judgment Under Uncertainty

Judgment Under Uncertainty
Author :
Publisher : Cambridge University Press
Total Pages : 574
Release :
ISBN-10 : 0521284147
ISBN-13 : 9780521284141
Rating : 4/5 (47 Downloads)

Synopsis Judgment Under Uncertainty by : Daniel Kahneman

Thirty-five chapters describe various judgmental heuristics and the biases they produce, not only in laboratory experiments, but in important social, medical, and political situations as well. Most review multiple studies or entire subareas rather than describing single experimental studies.

Data Mining: A Heuristic Approach

Data Mining: A Heuristic Approach
Author :
Publisher : IGI Global
Total Pages : 310
Release :
ISBN-10 : 9781591400110
ISBN-13 : 1591400112
Rating : 4/5 (10 Downloads)

Synopsis Data Mining: A Heuristic Approach by : Abbass, Hussein A.

Real life problems are known to be messy, dynamic and multi-objective, and involve high levels of uncertainty and constraints. Because traditional problem-solving methods are no longer capable of handling this level of complexity, heuristic search methods have attracted increasing attention in recent years for solving such problems. Inspired by nature, biology, statistical mechanics, physics and neuroscience, heuristics techniques are used to solve many problems where traditional methods have failed. Data Mining: A Heuristic Approach will be a repository for the applications of these techniques in the area of data mining.

Methods of Heuristics

Methods of Heuristics
Author :
Publisher : Routledge
Total Pages : 431
Release :
ISBN-10 : 9781317838494
ISBN-13 : 1317838491
Rating : 4/5 (94 Downloads)

Synopsis Methods of Heuristics by : R. Groner

This volume constitutes the edited proceedings of an interdisciplinary symposium on Methods of Heuristics, which was held at the University of Bern, Switzerland, from September 15 to 19, 1980. In organizing the symposium, the editors of the present volume were able to invite specialists from psychology, computer science, and mathematics. From their own perspective they made contributions to the central questions of the conference: What are heuristics, the methods and rules guiding discovery and problem solving in a variety of different fields? How did they develop in individual human beings and in the history of science? Is it possible to arrive at a commonly accepted definition of heuristics as the field unifying all these efforts, and, if yes, what are its basic characteristics?

Essentials of Metaheuristics (Second Edition)

Essentials of Metaheuristics (Second Edition)
Author :
Publisher :
Total Pages : 242
Release :
ISBN-10 : 1300549629
ISBN-13 : 9781300549628
Rating : 4/5 (29 Downloads)

Synopsis Essentials of Metaheuristics (Second Edition) by : Sean Luke

Interested in the Genetic Algorithm? Simulated Annealing? Ant Colony Optimization? Essentials of Metaheuristics covers these and other metaheuristics algorithms, and is intended for undergraduate students, programmers, and non-experts. The book covers a wide range of algorithms, representations, selection and modification operators, and related topics, and includes 71 figures and 135 algorithms great and small. Algorithms include: Gradient Ascent techniques, Hill-Climbing variants, Simulated Annealing, Tabu Search variants, Iterated Local Search, Evolution Strategies, the Genetic Algorithm, the Steady-State Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, Genetic Programming variants, One- and Two-Population Competitive Coevolution, N-Population Cooperative Coevolution, Implicit Fitness Sharing, Deterministic Crowding, NSGA-II, SPEA2, GRASP, Ant Colony Optimization variants, Guided Local Search, LEM, PBIL, UMDA, cGA, BOA, SAMUEL, ZCS, XCS, and XCSF.

Handbook of Approximation Algorithms and Metaheuristics

Handbook of Approximation Algorithms and Metaheuristics
Author :
Publisher : CRC Press
Total Pages : 840
Release :
ISBN-10 : 9781351236409
ISBN-13 : 1351236407
Rating : 4/5 (09 Downloads)

Synopsis Handbook of Approximation Algorithms and Metaheuristics by : Teofilo F. Gonzalez

Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.