Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Author :
Publisher : Springer
Total Pages : 389
Release :
ISBN-10 : 9783319536910
ISBN-13 : 3319536915
Rating : 4/5 (10 Downloads)

Synopsis Introduction to Hamiltonian Dynamical Systems and the N-Body Problem by : Kenneth R. Meyer

This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)

Hamiltonian Systems

Hamiltonian Systems
Author :
Publisher : Cambridge University Press
Total Pages : 262
Release :
ISBN-10 : 0521386705
ISBN-13 : 9780521386708
Rating : 4/5 (05 Downloads)

Synopsis Hamiltonian Systems by : Alfredo M. Ozorio de Almeida

Hamiltonian Systems outlines the main results in the field, and considers the implications for quantum mechanics.

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 221
Release :
ISBN-10 : 9783034803991
ISBN-13 : 3034803990
Rating : 4/5 (91 Downloads)

Synopsis Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces by : Birgit Jacob

This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.

Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems

Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems
Author :
Publisher : Cambridge University Press
Total Pages : 474
Release :
ISBN-10 : 9781009174862
ISBN-13 : 100917486X
Rating : 4/5 (62 Downloads)

Synopsis Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems by : Antonio Giorgilli

Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.

Hamiltonian Dynamical Systems and Applications

Hamiltonian Dynamical Systems and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 450
Release :
ISBN-10 : 9781402069642
ISBN-13 : 1402069642
Rating : 4/5 (42 Downloads)

Synopsis Hamiltonian Dynamical Systems and Applications by : Walter Craig

This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.

Critical Point Theory and Hamiltonian Systems

Critical Point Theory and Hamiltonian Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 292
Release :
ISBN-10 : 9781475720617
ISBN-13 : 1475720610
Rating : 4/5 (17 Downloads)

Synopsis Critical Point Theory and Hamiltonian Systems by : Jean Mawhin

FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN

Metamorphoses of Hamiltonian Systems with Symmetries

Metamorphoses of Hamiltonian Systems with Symmetries
Author :
Publisher : Springer
Total Pages : 155
Release :
ISBN-10 : 9783540315506
ISBN-13 : 3540315500
Rating : 4/5 (06 Downloads)

Synopsis Metamorphoses of Hamiltonian Systems with Symmetries by : Konstantinos Efstathiou

Modern notions and important tools of classical mechanics are used in the study of concrete examples that model physically significant molecular and atomic systems. The parametric nature of these examples leads naturally to the study of the major qualitative changes of such systems (metamorphoses) as the parameters are varied. The symmetries of these systems, discrete or continuous, exact or approximate, are used to simplify the problem through a number of mathematical tools and techniques like normalization and reduction. The book moves gradually from finding relative equilibria using symmetry, to the Hamiltonian Hopf bifurcation and its relation to monodromy and, finally, to generalizations of monodromy.

Introduction to the Perturbation Theory of Hamiltonian Systems

Introduction to the Perturbation Theory of Hamiltonian Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 221
Release :
ISBN-10 : 9783642030284
ISBN-13 : 3642030289
Rating : 4/5 (84 Downloads)

Synopsis Introduction to the Perturbation Theory of Hamiltonian Systems by : Dmitry Treschev

This book is an extended version of lectures given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics,physics,chemistry,and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cially.

Classical and Quantum Dynamics of Constrained Hamiltonian Systems

Classical and Quantum Dynamics of Constrained Hamiltonian Systems
Author :
Publisher : World Scientific
Total Pages : 317
Release :
ISBN-10 : 9789814299640
ISBN-13 : 9814299642
Rating : 4/5 (40 Downloads)

Synopsis Classical and Quantum Dynamics of Constrained Hamiltonian Systems by : Heinz J. Rothe

This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field?antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field.

Stochastic Controls

Stochastic Controls
Author :
Publisher : Springer Science & Business Media
Total Pages : 459
Release :
ISBN-10 : 9781461214663
ISBN-13 : 1461214661
Rating : 4/5 (63 Downloads)

Synopsis Stochastic Controls by : Jiongmin Yong

As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.