Groups, Rings And Modules With Applications

Groups, Rings And Modules With Applications
Author :
Publisher : Universities Press
Total Pages : 336
Release :
ISBN-10 : 8173714290
ISBN-13 : 9788173714290
Rating : 4/5 (90 Downloads)

Synopsis Groups, Rings And Modules With Applications by : M.R. Adhikari

Groups, Rings, Modules

Groups, Rings, Modules
Author :
Publisher : Courier Corporation
Total Pages : 484
Release :
ISBN-10 : 9780486795423
ISBN-13 : 048679542X
Rating : 4/5 (23 Downloads)

Synopsis Groups, Rings, Modules by : Maurice Auslander

Classic monograph covers sets and maps, monoids and groups, unique factorization domains, localization and tensor products, applications of fundamental theorem, algebraic field extension, Dedekind domains, and much more. 1974 edition.

Foundations of Module and Ring Theory

Foundations of Module and Ring Theory
Author :
Publisher : Routledge
Total Pages : 622
Release :
ISBN-10 : 9781351447348
ISBN-13 : 1351447343
Rating : 4/5 (48 Downloads)

Synopsis Foundations of Module and Ring Theory by : Robert Wisbauer

This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.

An Introduction to Group Rings

An Introduction to Group Rings
Author :
Publisher : Springer Science & Business Media
Total Pages : 394
Release :
ISBN-10 : 1402002386
ISBN-13 : 9781402002380
Rating : 4/5 (86 Downloads)

Synopsis An Introduction to Group Rings by : César Polcino Milies

to Group Rings by Cesar Polcino Milies Instituto de Matematica e Estatistica, Universidade de sao Paulo, sao Paulo, Brasil and Sudarshan K. Sehgal Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton. Canada SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. A c.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4020-0239-7 ISBN 978-94-010-0405-3 (eBook) DOI 10.1007/978-94-010-0405-3 Printed an acid-free paper AII Rights Reserved (c) 2002 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2002 Softcover reprint ofthe hardcover Ist edition 2002 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, inc1uding photocopying, recording Of by any information storage and retrieval system, without written permis sion from the copyright owner. Contents Preface ix 1 Groups 1 1.1 Basic Concepts . . . . . . . . . . . . 1 1.2 Homomorphisms and Factor Groups 10 1.3 Abelian Groups . 18 1.4 Group Actions, p-groups and Sylow Subgroups 21 1.5 Solvable and Nilpotent Groups 27 1.6 FC Groups .

Groups, Rings and Group Rings

Groups, Rings and Group Rings
Author :
Publisher : American Mathematical Soc.
Total Pages : 283
Release :
ISBN-10 : 9780821847718
ISBN-13 : 0821847716
Rating : 4/5 (18 Downloads)

Synopsis Groups, Rings and Group Rings by : A. Giambruno

Represents the proceedings of the conference on Groups, Rings and Group Rings, held July 28 - August 2, 2008, in Ubatuba, Brazil. This title contains results in active research areas in the theory of groups, group rings and algebras (including noncommutative rings), polynomial identities, Lie algebras and superalgebras.

Integral Closure of Ideals, Rings, and Modules

Integral Closure of Ideals, Rings, and Modules
Author :
Publisher : Cambridge University Press
Total Pages : 446
Release :
ISBN-10 : 9780521688604
ISBN-13 : 0521688604
Rating : 4/5 (04 Downloads)

Synopsis Integral Closure of Ideals, Rings, and Modules by : Craig Huneke

Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.

Introductory Lectures on Rings and Modules

Introductory Lectures on Rings and Modules
Author :
Publisher : Cambridge University Press
Total Pages : 252
Release :
ISBN-10 : 0521644070
ISBN-13 : 9780521644075
Rating : 4/5 (70 Downloads)

Synopsis Introductory Lectures on Rings and Modules by : John A. Beachy

A first-year graduate text or reference for advanced undergraduates on noncommutative aspects of rings and modules.

Algebras, Rings and Modules

Algebras, Rings and Modules
Author :
Publisher : CRC Press
Total Pages : 384
Release :
ISBN-10 : 9781482245059
ISBN-13 : 1482245051
Rating : 4/5 (59 Downloads)

Synopsis Algebras, Rings and Modules by : Michiel Hazewinkel

The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth centu

Visual Group Theory

Visual Group Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 295
Release :
ISBN-10 : 9781470464332
ISBN-13 : 1470464330
Rating : 4/5 (32 Downloads)

Synopsis Visual Group Theory by : Nathan Carter

Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.

Foundations of Commutative Rings and Their Modules

Foundations of Commutative Rings and Their Modules
Author :
Publisher : Springer
Total Pages : 714
Release :
ISBN-10 : 9789811033377
ISBN-13 : 9811033374
Rating : 4/5 (77 Downloads)

Synopsis Foundations of Commutative Rings and Their Modules by : Fanggui Wang

This book provides an introduction to the basics and recent developments of commutative algebra. A glance at the contents of the first five chapters shows that the topics covered are ones that usually are included in any commutative algebra text. However, the contents of this book differ significantly from most commutative algebra texts: namely, its treatment of the Dedekind–Mertens formula, the (small) finitistic dimension of a ring, Gorenstein rings, valuation overrings and the valuative dimension, and Nagata rings. Going further, Chapter 6 presents w-modules over commutative rings as they can be most commonly used by torsion theory and multiplicative ideal theory. Chapter 7 deals with multiplicative ideal theory over integral domains. Chapter 8 collects various results of the pullbacks, especially Milnor squares and D+M constructions, which are probably the most important example-generating machines. In Chapter 9, coherent rings with finite weak global dimensions are probed, and the local ring of weak global dimension two is elaborated on by combining homological tricks and methods of star operation theory. Chapter 10 is devoted to the Grothendieck group of a commutative ring. In particular, the Bass–Quillen problem is discussed. Finally, Chapter 11 aims to introduce relative homological algebra, especially where the related concepts of integral domains which appear in classical ideal theory are defined and investigated by using the class of Gorenstein projective modules. Each section of the book is followed by a selection of exercises of varying degrees of difficulty. This book will appeal to a wide readership from graduate students to academic researchers who are interested in studying commutative algebra.