Introduction to IDDQ Testing

Introduction to IDDQ Testing
Author :
Publisher : Springer Science & Business Media
Total Pages : 336
Release :
ISBN-10 : 9781461561378
ISBN-13 : 146156137X
Rating : 4/5 (78 Downloads)

Synopsis Introduction to IDDQ Testing by : S. Chakravarty

Testing techniques for VLSI circuits are undergoing many exciting changes. The predominant method for testing digital circuits consists of applying a set of input stimuli to the IC and monitoring the logic levels at primary outputs. If, for one or more inputs, there is a discrepancy between the observed output and the expected output then the IC is declared to be defective. A new approach to testing digital circuits, which has come to be known as IDDQ testing, has been actively researched for the last fifteen years. In IDDQ testing, the steady state supply current, rather than the logic levels at the primary outputs, is monitored. Years of research suggests that IDDQ testing can significantly improve the quality and reliability of fabricated circuits. This has prompted many semiconductor manufacturers to adopt this testing technique, among them Philips Semiconductors, Ford Microelectronics, Intel, Texas Instruments, LSI Logic, Hewlett-Packard, SUN microsystems, Alcatel, and SGS Thomson. This increase in the use of IDDQ testing should be of interest to three groups of individuals associated with the IC business: Product Managers and Test Engineers, CAD Tool Vendors and Circuit Designers. Introduction to IDDQ Testing is designed to educate this community. The authors have summarized in one volume the main findings of more than fifteen years of research in this area.

IDDQ Testing of VLSI Circuits

IDDQ Testing of VLSI Circuits
Author :
Publisher : Springer Science & Business Media
Total Pages : 121
Release :
ISBN-10 : 9781461531463
ISBN-13 : 1461531462
Rating : 4/5 (63 Downloads)

Synopsis IDDQ Testing of VLSI Circuits by : Ravi K. Gulati

Power supply current monitoring to detect CMOS IC defects during production testing quietly laid down its roots in the mid-1970s. Both Sandia Labs and RCA in the United States and Philips Labs in the Netherlands practiced this procedure on their CMOS ICs. At that time, this practice stemmed simply from an intuitive sense that CMOS ICs showing abnormal quiescent power supply current (IDDQ) contained defects. Later, this intuition was supported by data and analysis in the 1980s by Levi (RACD, Malaiya and Su (SUNY-Binghamton), Soden and Hawkins (Sandia Labs and the University of New Mexico), Jacomino and co-workers (Laboratoire d'Automatique de Grenoble), and Maly and co-workers (Carnegie Mellon University). Interest in IDDQ testing has advanced beyond the data reported in the 1980s and is now focused on applications and evaluations involving larger volumes of ICs that improve quality beyond what can be achieved by previous conventional means. In the conventional style of testing one attempts to propagate the logic states of the suspended nodes to primary outputs. This is done for all or most nodes of the circuit. For sequential circuits, in particular, the complexity of finding suitable tests is very high. In comparison, the IDDQ test does not observe the logic states, but measures the integrated current that leaks through all gates. In other words, it is like measuring a patient's temperature to determine the state of health. Despite perceived advantages, during the years that followed its initial announcements, skepticism about the practicality of IDDQ testing prevailed. The idea, however, provided a great opportunity to researchers. New results on test generation, fault simulation, design for testability, built-in self-test, and diagnosis for this style of testing have since been reported. After a decade of research, we are definitely closer to practice.

Counterfeit Integrated Circuits

Counterfeit Integrated Circuits
Author :
Publisher : Springer
Total Pages : 282
Release :
ISBN-10 : 9783319118246
ISBN-13 : 3319118242
Rating : 4/5 (46 Downloads)

Synopsis Counterfeit Integrated Circuits by : Mark (Mohammad) Tehranipoor

This timely and exhaustive study offers a much-needed examination of the scope and consequences of the electronic counterfeit trade. The authors describe a variety of shortcomings and vulnerabilities in the electronic component supply chain, which can result in counterfeit integrated circuits (ICs). Not only does this book provide an assessment of the current counterfeiting problems facing both the public and private sectors, it also offers practical, real-world solutions for combatting this substantial threat. · Helps beginners and practitioners in the field by providing a comprehensive background on the counterfeiting problem; · Presents innovative taxonomies for counterfeit types, test methods, and counterfeit defects, which allows for a detailed analysis of counterfeiting and its mitigation; · Provides step-by-step solutions for detecting different types of counterfeit ICs; · Offers pragmatic and practice-oriented, realistic solutions to counterfeit IC detection and avoidance, for industry and government.

Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits

Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits
Author :
Publisher : Springer Science & Business Media
Total Pages : 690
Release :
ISBN-10 : 9780306470400
ISBN-13 : 0306470403
Rating : 4/5 (00 Downloads)

Synopsis Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits by : M. Bushnell

The modern electronic testing has a forty year history. Test professionals hold some fairly large conferences and numerous workshops, have a journal, and there are over one hundred books on testing. Still, a full course on testing is offered only at a few universities, mostly by professors who have a research interest in this area. Apparently, most professors would not have taken a course on electronic testing when they were students. Other than the computer engineering curriculum being too crowded, the major reason cited for the absence of a course on electronic testing is the lack of a suitable textbook. For VLSI the foundation was provided by semiconductor device techn- ogy, circuit design, and electronic testing. In a computer engineering curriculum, therefore, it is necessary that foundations should be taught before applications. The field of VLSI has expanded to systems-on-a-chip, which include digital, memory, and mixed-signalsubsystems. To our knowledge this is the first textbook to cover all three types of electronic circuits. We have written this textbook for an undergraduate “foundations” course on electronic testing. Obviously, it is too voluminous for a one-semester course and a teacher will have to select from the topics. We did not restrict such freedom because the selection may depend upon the individual expertise and interests. Besides, there is merit in having a larger book that will retain its usefulness for the owner even after the completion of the course. With equal tenacity, we address the needs of three other groups of readers.

Power Management of Digital Circuits in Deep Sub-Micron CMOS Technologies

Power Management of Digital Circuits in Deep Sub-Micron CMOS Technologies
Author :
Publisher : Springer Science & Business Media
Total Pages : 198
Release :
ISBN-10 : 9781402050817
ISBN-13 : 140205081X
Rating : 4/5 (17 Downloads)

Synopsis Power Management of Digital Circuits in Deep Sub-Micron CMOS Technologies by : Stephan Henzler

This book provides an in-depth overview of design and implementation of leakage reduction techniques. The focus is on applicability, technology dependencies, and scalability. The book mainly deals with circuit design but also addresses the interface between circuit and system level design on the one side and between circuit and physical design on the other side.

Economics of Electronic Design, Manufacture and Test

Economics of Electronic Design, Manufacture and Test
Author :
Publisher : Springer Science & Business Media
Total Pages : 184
Release :
ISBN-10 : 0792394712
ISBN-13 : 9780792394716
Rating : 4/5 (12 Downloads)

Synopsis Economics of Electronic Design, Manufacture and Test by : M. Abadir

The general understanding of design is that it should lead to a manufacturable product. Neither the design nor the process of manufacturing is perfect. As a result, the product will be faulty, will require testing and fixing. Where does economics enter this scenario? Consider the cost of testing and fixing the product. If a manufactured product is grossly faulty, or too many of the products are faulty, the cost of testing and fixing will be high. Suppose we do not like that. We then ask what is the cause of the faulty product. There must be something wrong in the manufacturing process. We trace this cause and fix it. Suppose we fix all possible causes and have no defective products. We would have eliminated the need for testing. Unfortunately, things are not so perfect. There is a cost involved with finding and eliminating the causes of faults. We thus have two costs: the cost of testing and fixing (we will call it cost-1), and the cost of finding and eliminating causes of faults (call it cost-2). Both costs, in some way, are included in the overall cost of the product. If we try to eliminate cost-1, cost-2 goes up, and vice versa. An economic system of production will minimize the overall cost of the product. Economics of Electronic Design, Manufacture and Test is a collection of research contributions derived from the Second Workshop on Economics of Design, Manufacture and Test, written for inclusion in this book.

Failure Analysis

Failure Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 372
Release :
ISBN-10 : 9781119990000
ISBN-13 : 1119990009
Rating : 4/5 (00 Downloads)

Synopsis Failure Analysis by : Marius Bazu

Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.

Analog and Mixed-signal Test

Analog and Mixed-signal Test
Author :
Publisher :
Total Pages : 296
Release :
ISBN-10 : UOM:39015047075893
ISBN-13 :
Rating : 4/5 (93 Downloads)

Synopsis Analog and Mixed-signal Test by : Bapiraju Vinnakota

More and more chips are being designed with both analog and digital circuitry next to each other, which makes testing analog circuitry even more challenging. This comprehensive guide reviews all the potential testing options, helping designers, engineers, CAD developers, and researchers choose the most cost-effective, accurate solutions for both mixed-signal and analog-only testing.