Geometry Of Curves
Download Geometry Of Curves full books in PDF, epub, and Kindle. Read online free Geometry Of Curves ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Elsa Abbena |
Publisher |
: CRC Press |
Total Pages |
: 1024 |
Release |
: 2017-09-06 |
ISBN-10 |
: 9781351992206 |
ISBN-13 |
: 1351992201 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Modern Differential Geometry of Curves and Surfaces with Mathematica by : Elsa Abbena
Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.
Author |
: M. Abate |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 407 |
Release |
: 2012-06-11 |
ISBN-10 |
: 9788847019416 |
ISBN-13 |
: 8847019419 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Curves and Surfaces by : M. Abate
The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of parametrized plane and space curves (curves in n-dimensional space are discussed in the complementary material): curvature, torsion, Frenet’s formulas and the fundamental theorem of the local theory of curves. Then, after a self-contained presentation of degree theory for continuous self-maps of the circumference, we study the global theory of plane curves, introducing winding and rotation numbers, and proving the Jordan curve theorem for curves of class C2, and Hopf theorem on the rotation number of closed simple curves. The local theory of surfaces begins with a comparison of the concept of parametrized (i.e., immersed) surface with the concept of regular (i.e., embedded) surface. We then develop the basic differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivations on germs of differentiable functions; we shall consistently use both approaches in the whole book) and orientation. Next we study the several notions of curvature on a surface, stressing both the geometrical meaning of the objects introduced and the algebraic/analytical methods needed to study them via the Gauss map, up to the proof of Gauss’ Teorema Egregium. Then we introduce vector fields on a surface (flow, first integrals, integral curves) and geodesics (definition, basic properties, geodesic curvature, and, in the complementary material, a full proof of minimizing properties of geodesics and of the Hopf-Rinow theorem for surfaces). Then we shall present a proof of the celebrated Gauss-Bonnet theorem, both in its local and in its global form, using basic properties (fully proved in the complementary material) of triangulations of surfaces. As an application, we shall prove the Poincaré-Hopf theorem on zeroes of vector fields. Finally, the last chapter will be devoted to several important results on the global theory of surfaces, like for instance the characterization of surfaces with constant Gaussian curvature, and the orientability of compact surfaces in R3.
Author |
: Victor Andreevich Toponogov |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 215 |
Release |
: 2006-09-10 |
ISBN-10 |
: 9780817644024 |
ISBN-13 |
: 0817644024 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Differential Geometry of Curves and Surfaces by : Victor Andreevich Toponogov
Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels
Author |
: J.W. Rutter |
Publisher |
: CRC Press |
Total Pages |
: 384 |
Release |
: 2000-02-23 |
ISBN-10 |
: 1584881666 |
ISBN-13 |
: 9781584881667 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Geometry of Curves by : J.W. Rutter
Interest in the study of geometry is currently enjoying a resurgence-understandably so, as the study of curves was once the playground of some very great mathematicians. However, many of the subject's more exciting aspects require a somewhat advanced mathematics background. For the "fun stuff" to be accessible, we need to offer students an introduction with modest prerequisites, one that stimulates their interest and focuses on problem solving. Integrating parametric, algebraic, and projective curves into a single text, Geometry of Curves offers students a unique approach that provides a mathematical structure for solving problems, not just a catalog of theorems. The author begins with the basics, then takes students on a fascinating journey from conics, higher algebraic and transcendental curves, through the properties of parametric curves, the classification of limaçons, envelopes, and finally to projective curves, their relationship to algebraic curves, and their application to asymptotes and boundedness. The uniqueness of this treatment lies in its integration of the different types of curves, its use of analytic methods, and its generous number of examples, exercises, and illustrations. The result is a practical text, almost entirely self-contained, that not only imparts a deeper understanding of the theory, but inspires a heightened appreciation of geometry and interest in more advanced studies.
Author |
: Masaaki Umehara |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 327 |
Release |
: 2017-05-12 |
ISBN-10 |
: 9789814740265 |
ISBN-13 |
: 9814740268 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Differential Geometry Of Curves And Surfaces by : Masaaki Umehara
'In a class populated by students who already have some exposure to the concept of a manifold, the presence of chapter 3 in this text may make for an unusual and interesting course. The primary function of this book will be as a text for a more conventional course in the classical theory of curves and surfaces.'MAA ReviewsThis engrossing volume on curve and surface theories is the result of many years of experience the authors have had with teaching the most essential aspects of this subject. The first half of the text is suitable for a university-level course, without the need for referencing other texts, as it is completely self-contained. More advanced material in the second half of the book, including appendices, also serves more experienced students well.Furthermore, this text is also suitable for a seminar for graduate students, and for self-study. It is written in a robust style that gives the student the opportunity to continue his study at a higher level beyond what a course would usually offer. Further material is included, for example, closed curves, enveloping curves, curves of constant width, the fundamental theorem of surface theory, constant mean curvature surfaces, and existence of curvature line coordinates.Surface theory from the viewpoint of manifolds theory is explained, and encompasses higher level material that is useful for the more advanced student. This includes, but is not limited to, indices of umbilics, properties of cycloids, existence of conformal coordinates, and characterizing conditions for singularities.In summary, this textbook succeeds in elucidating detailed explanations of fundamental material, where the most essential basic notions stand out clearly, but does not shy away from the more advanced topics needed for research in this field. It provides a large collection of mathematically rich supporting topics. Thus, it is an ideal first textbook in this field.
Author |
: Kristopher Tapp |
Publisher |
: Springer |
Total Pages |
: 370 |
Release |
: 2016-09-30 |
ISBN-10 |
: 9783319397993 |
ISBN-13 |
: 3319397990 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Differential Geometry of Curves and Surfaces by : Kristopher Tapp
This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.
Author |
: Werner Lütkebohmert |
Publisher |
: Springer |
Total Pages |
: 398 |
Release |
: 2016-01-26 |
ISBN-10 |
: 9783319273716 |
ISBN-13 |
: 331927371X |
Rating |
: 4/5 (16 Downloads) |
Synopsis Rigid Geometry of Curves and Their Jacobians by : Werner Lütkebohmert
This book presents some of the most important aspects of rigid geometry, namely its applications to the study of smooth algebraic curves, of their Jacobians, and of abelian varieties - all of them defined over a complete non-archimedean valued field. The text starts with a survey of the foundation of rigid geometry, and then focuses on a detailed treatment of the applications. In the case of curves with split rational reduction there is a complete analogue to the fascinating theory of Riemann surfaces. In the case of proper smooth group varieties the uniformization and the construction of abelian varieties are treated in detail. Rigid geometry was established by John Tate and was enriched by a formal algebraic approach launched by Michel Raynaud. It has proved as a means to illustrate the geometric ideas behind the abstract methods of formal algebraic geometry as used by Mumford and Faltings. This book should be of great use to students wishing to enter this field, as well as those already working in it.
Author |
: Wolfgang Kühnel |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 394 |
Release |
: 2006 |
ISBN-10 |
: 9780821839881 |
ISBN-13 |
: 0821839888 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Differential Geometry by : Wolfgang Kühnel
Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.
Author |
: Alberto Lastra |
Publisher |
: Springer Nature |
Total Pages |
: 293 |
Release |
: 2021-09-06 |
ISBN-10 |
: 9783030813178 |
ISBN-13 |
: 3030813177 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Parametric Geometry of Curves and Surfaces by : Alberto Lastra
This textbook provides a thorough introduction to the differential geometry of parametrized curves and surfaces, along with a wealth of applications to specific architectural elements. Geometric elements in architecture respond to practical, physical and aesthetic needs. Proper understanding of the mathematics underlying the geometry provides control over the construction. This book relates the classical mathematical theory of parametrized curves and surfaces to multiple applications in architecture. The presentation is mathematically complete with numerous figures and animations illustrating the theory, and special attention is given to some of the recent trends in the field. Solved exercises are provided to see the theory in practice. Intended as a textbook for lecture courses, Parametric Geometry of Curves and Surfaces is suitable for mathematically-inclined students in engineering, architecture and related fields, and can also serve as a textbook for traditional differential geometry courses to mathematics students. Researchers interested in the mathematics of architecture or computer-aided design will also value its combination of precise mathematics and architectural examples.
Author |
: C. Zwikker |
Publisher |
: Courier Corporation |
Total Pages |
: 316 |
Release |
: 2011-11-30 |
ISBN-10 |
: 9780486153438 |
ISBN-13 |
: 0486153436 |
Rating |
: 4/5 (38 Downloads) |
Synopsis The Advanced Geometry of Plane Curves and Their Applications by : C. Zwikker
"Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating." — British Journal of Applied Physics This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves. Informative discussions of the line, circle, parabola, ellipse, and hyperbola presuppose only the most elementary facts. The less common curves — cissoid, strophoid, spirals, the leminscate, cycloid, epicycloid, cardioid, and many others — receive introductions that explain both their basic and advanced properties. Derived curves-the involute, evolute, pedal curve, envelope, and orthogonal trajectories-are also examined, with definitions of their important applications. These range through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of subatomic particles, and similar areas in physics and engineering. The author represents the points of the curves by complex numbers, rather than the real Cartesian coordinates, an approach that permits simple, direct, and elegant proofs.