Geometry of Characteristic Classes

Geometry of Characteristic Classes
Author :
Publisher : American Mathematical Soc.
Total Pages : 202
Release :
ISBN-10 : 9780821821398
ISBN-13 : 0821821393
Rating : 4/5 (98 Downloads)

Synopsis Geometry of Characteristic Classes by : Shigeyuki Morita

Characteristic classes are central to the modern study of the topology and geometry of manifolds. They were first introduced in topology, where, for instance, they could be used to define obstructions to the existence of certain fiber bundles. Characteristic classes were later defined (via the Chern-Weil theory) using connections on vector bundles, thus revealing their geometric side. In the late 1960s new theories arose that described still finer structures. Examples of the so-called secondary characteristic classes came from Chern-Simons invariants, Gelfand-Fuks cohomology, and the characteristic classes of flat bundles. The new techniques are particularly useful for the study of fiber bundles whose structure groups are not finite dimensional. The theory of characteristic classes of surface bundles is perhaps the most developed. Here the special geometry of surfaces allows one to connect this theory to the theory of moduli space of Riemann surfaces, i.e., Teichmüller theory. In this book Morita presents an introduction to the modern theories of characteristic classes.

Characteristic Classes

Characteristic Classes
Author :
Publisher : Princeton University Press
Total Pages : 342
Release :
ISBN-10 : 0691081220
ISBN-13 : 9780691081229
Rating : 4/5 (20 Downloads)

Synopsis Characteristic Classes by : John Willard Milnor

The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

Differential Geometry

Differential Geometry
Author :
Publisher : Springer
Total Pages : 358
Release :
ISBN-10 : 9783319550848
ISBN-13 : 3319550845
Rating : 4/5 (48 Downloads)

Synopsis Differential Geometry by : Loring W. Tu

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Loop Spaces, Characteristic Classes and Geometric Quantization

Loop Spaces, Characteristic Classes and Geometric Quantization
Author :
Publisher : Springer Science & Business Media
Total Pages : 318
Release :
ISBN-10 : 9780817647315
ISBN-13 : 0817647317
Rating : 4/5 (15 Downloads)

Synopsis Loop Spaces, Characteristic Classes and Geometric Quantization by : Jean-Luc Brylinski

This book examines the differential geometry of manifolds, loop spaces, line bundles and groupoids, and the relations of this geometry to mathematical physics. Applications presented in the book involve anomaly line bundles on loop spaces and anomaly functionals, central extensions of loop groups, Kähler geometry of the space of knots, and Cheeger--Chern--Simons secondary characteristics classes. It also covers the Dirac monopole and Dirac’s quantization of the electrical charge.

Complex Manifolds without Potential Theory

Complex Manifolds without Potential Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 158
Release :
ISBN-10 : 9781468493443
ISBN-13 : 1468493442
Rating : 4/5 (43 Downloads)

Synopsis Complex Manifolds without Potential Theory by : Shiing-shen Chern

From the reviews of the second edition: "The new methods of complex manifold theory are very useful tools for investigations in algebraic geometry, complex function theory, differential operators and so on. The differential geometrical methods of this theory were developed essentially under the influence of Professor S.-S. Chern's works. The present book is a second edition... It can serve as an introduction to, and a survey of, this theory and is based on the author's lectures held at the University of California and at a summer seminar of the Canadian Mathematical Congress.... The text is illustrated by many examples... The book is warmly recommended to everyone interested in complex differential geometry." #Acta Scientiarum Mathematicarum, 41, 3-4#

From Calculus to Cohomology

From Calculus to Cohomology
Author :
Publisher : Cambridge University Press
Total Pages : 302
Release :
ISBN-10 : 0521589568
ISBN-13 : 9780521589567
Rating : 4/5 (68 Downloads)

Synopsis From Calculus to Cohomology by : Ib H. Madsen

An introductory textbook on cohomology and curvature with emphasis on applications.

Curvature and Characteristic Classes

Curvature and Characteristic Classes
Author :
Publisher : Springer
Total Pages : 185
Release :
ISBN-10 : 9783540359142
ISBN-13 : 3540359141
Rating : 4/5 (42 Downloads)

Synopsis Curvature and Characteristic Classes by : J.L. Dupont

Fibre Bundles

Fibre Bundles
Author :
Publisher : Springer Science & Business Media
Total Pages : 333
Release :
ISBN-10 : 9781475740080
ISBN-13 : 1475740085
Rating : 4/5 (80 Downloads)

Synopsis Fibre Bundles by : D. Husemöller

The notion of a fibre bundle first arose out of questions posed in the 1930s on the topology and geometry of manifolds. By the year 1950 the defini tion of fibre bundle had been clearly formulated, the homotopy classifica tion of fibre bundles achieved, and the theory of characteristic classes of fibre bundles developed by several mathematicians, Chern, Pontrjagin, Stiefel, and Whitney. Steenrod's book, which appeared in 1950, gave a coherent treatment of the subject up to that time. About 1955 Milnor gave a construction of a universal fibre bundle for any topological group. This construction is also included in Part I along with an elementary proof that the bundle is universal. During the five years from 1950 to 1955, Hirzebruch clarified the notion of characteristic class and used it to prove a general Riemann-Roch theorem for algebraic varieties. This was published in his Ergebnisse Monograph. A systematic development of characteristic classes and their applications to manifolds is given in Part III and is based on the approach of Hirze bruch as modified by Grothendieck.

Geometry of Differential Forms

Geometry of Differential Forms
Author :
Publisher : American Mathematical Soc.
Total Pages : 356
Release :
ISBN-10 : 0821810456
ISBN-13 : 9780821810453
Rating : 4/5 (56 Downloads)

Synopsis Geometry of Differential Forms by : Shigeyuki Morita

Since the times of Gauss, Riemann, and Poincare, one of the principal goals of the study of manifolds has been to relate local analytic properties of a manifold with its global topological properties. Among the high points on this route are the Gauss-Bonnet formula, the de Rham complex, and the Hodge theorem; these results show, in particular, that the central tool in reaching the main goal of global analysis is the theory of differential forms. The book by Morita is a comprehensive introduction to differential forms. It begins with a quick introduction to the notion of differentiable manifolds and then develops basic properties of differential forms as well as fundamental results concerning them, such as the de Rham and Frobenius theorems. The second half of the book is devoted to more advanced material, including Laplacians and harmonic forms on manifolds, the concepts of vector bundles and fiber bundles, and the theory of characteristic classes. Among the less traditional topics treated is a detailed description of the Chern-Weil theory. The book can serve as a textbook for undergraduate students and for graduate students in geometry.

Complex Geometry

Complex Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 336
Release :
ISBN-10 : 3540212906
ISBN-13 : 9783540212904
Rating : 4/5 (06 Downloads)

Synopsis Complex Geometry by : Daniel Huybrechts

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)