Geometric Theory Of Dynamical Systems
Download Geometric Theory Of Dynamical Systems full books in PDF, epub, and Kindle. Read online free Geometric Theory Of Dynamical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: J. Jr. Palis |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 208 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461257035 |
ISBN-13 |
: 1461257034 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Geometric Theory of Dynamical Systems by : J. Jr. Palis
... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.
Author |
: |
Publisher |
: World Scientific |
Total Pages |
: 444 |
Release |
: 2009 |
ISBN-10 |
: 9789814282253 |
ISBN-13 |
: 9814282251 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Geometrical Theory of Dynamical Systems and Fluid Flows (revised Edition) by :
"This is an introductory textbook on the geometrical theory of dynamical systems, fluid flows and certain integrable systems. The topics are interdisciplinary and extend from mathematics, mechanics and physics to mechanical engineering, and the approach is very fundamental. The main theme of this book is a unified formulation to understand dynamical evolutions of physical systems within mathematical ideas of Riemannian geometry and Lie groups by using well-known examples. Underlying mathematical concepts include transformation invariance, covariant derivative, geodesic equation and curvature tensors on the basis of differential geometry, theory of Lie groups and integrability. These mathematical theories are applied to physical systems such as free rotation of a top, surface wave of shallow water, action principle in mechanics, diffeomorphic flow of fluids, vortex motions and some integrable systems. In the latest edition, a new formulation of fluid flows is also presented in a unified fashion on the basis of the gauge principle of theoretical physics and principle of least action along with new type of Lagrangians. A great deal of effort has been directed toward making the description elementary, clear and concise, to provide beginners easy access to the topics."-
Author |
: Keith Burns |
Publisher |
: CRC Press |
Total Pages |
: 408 |
Release |
: 2005-05-27 |
ISBN-10 |
: 1584882530 |
ISBN-13 |
: 9781584882534 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Differential Geometry and Topology by : Keith Burns
Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.
Author |
: Eugene M. Izhikevich |
Publisher |
: MIT Press |
Total Pages |
: 459 |
Release |
: 2010-01-22 |
ISBN-10 |
: 9780262514200 |
ISBN-13 |
: 0262514206 |
Rating |
: 4/5 (00 Downloads) |
Synopsis Dynamical Systems in Neuroscience by : Eugene M. Izhikevich
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Author |
: Tsutomu (Jixin) Kambe |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 444 |
Release |
: 2009-12-28 |
ISBN-10 |
: 9789813107601 |
ISBN-13 |
: 981310760X |
Rating |
: 4/5 (01 Downloads) |
Synopsis Geometrical Theory Of Dynamical Systems And Fluid Flows (Revised Edition) by : Tsutomu (Jixin) Kambe
This is an introductory textbook on the geometrical theory of dynamical systems, fluid flows and certain integrable systems. The topics are interdisciplinary and extend from mathematics, mechanics and physics to mechanical engineering, and the approach is very fundamental. The main theme of this book is a unified formulation to understand dynamical evolutions of physical systems within mathematical ideas of Riemannian geometry and Lie groups by using well-known examples. Underlying mathematical concepts include transformation invariance, covariant derivative, geodesic equation and curvature tensors on the basis of differential geometry, theory of Lie groups and integrability. These mathematical theories are applied to physical systems such as free rotation of a top, surface wave of shallow water, action principle in mechanics, diffeomorphic flow of fluids, vortex motions and some integrable systems.In the latest edition, a new formulation of fluid flows is also presented in a unified fashion on the basis of the gauge principle of theoretical physics and principle of least action along with new type of Lagrangians. A great deal of effort has been directed toward making the description elementary, clear and concise, to provide beginners easy access to the topics.
Author |
: Jared Maruskin |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 350 |
Release |
: 2018-08-21 |
ISBN-10 |
: 9783110597806 |
ISBN-13 |
: 3110597802 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Dynamical Systems and Geometric Mechanics by : Jared Maruskin
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.
Author |
: Ya. B. Pesin |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 334 |
Release |
: 2009 |
ISBN-10 |
: 9780821848890 |
ISBN-13 |
: 0821848895 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Lectures on Fractal Geometry and Dynamical Systems by : Ya. B. Pesin
Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.
Author |
: Andrei A. Agrachev |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 440 |
Release |
: 2004-04-15 |
ISBN-10 |
: 3540210199 |
ISBN-13 |
: 9783540210191 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Control Theory from the Geometric Viewpoint by : Andrei A. Agrachev
This book presents some facts and methods of Mathematical Control Theory treated from the geometric viewpoint. It is devoted to finite-dimensional deterministic control systems governed by smooth ordinary differential equations. The problems of controllability, state and feedback equivalence, and optimal control are studied. Some of the topics treated by the authors are covered in monographic or textbook literature for the first time while others are presented in a more general and flexible setting than elsewhere. Although being fundamentally written for mathematicians, the authors make an attempt to reach both the practitioner and the theoretician by blending the theory with applications. They maintain a good balance between the mathematical integrity of the text and the conceptual simplicity that might be required by engineers. It can be used as a text for graduate courses and will become most valuable as a reference work for graduate students and researchers.
Author |
: Velimir Jurdjevic |
Publisher |
: Cambridge University Press |
Total Pages |
: 516 |
Release |
: 1997 |
ISBN-10 |
: 9780521495028 |
ISBN-13 |
: 0521495024 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Geometric Control Theory by : Velimir Jurdjevic
Geometric control theory is concerned with the evolution of systems subject to physical laws but having some degree of freedom through which motion is to be controlled. This book describes the mathematical theory inspired by the irreversible nature of time evolving events. The first part of the book deals with the issue of being able to steer the system from any point of departure to any desired destination. The second part deals with optimal control, the question of finding the best possible course. An overlap with mathematical physics is demonstrated by the Maximum principle, a fundamental principle of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. Applications are drawn from geometry, mechanics, and control of dynamical systems. The geometric language in which the results are expressed allows clear visual interpretations and makes the book accessible to physicists and engineers as well as to mathematicians.
Author |
: Daniel Henry |
Publisher |
: Springer |
Total Pages |
: 353 |
Release |
: 2006-11-15 |
ISBN-10 |
: 9783540385288 |
ISBN-13 |
: 3540385282 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Geometric Theory of Semilinear Parabolic Equations by : Daniel Henry