Geometric Methods In Signal And Image Analysis
Download Geometric Methods In Signal And Image Analysis full books in PDF, epub, and Kindle. Read online free Geometric Methods In Signal And Image Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Hamid Krim |
Publisher |
: Cambridge University Press |
Total Pages |
: 299 |
Release |
: 2015-06-18 |
ISBN-10 |
: 9781316351963 |
ISBN-13 |
: 1316351963 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Geometric Methods in Signal and Image Analysis by : Hamid Krim
This comprehensive guide offers a new approach for developing and implementing robust computational methodologies that uncover the key geometric and topological information from signals and images. With the help of detailed real-world examples and applications, readers will learn how to solve complex signal and image processing problems in fields ranging from remote sensing to medical imaging, bioinformatics, robotics, security, and defence. With an emphasis on intuitive and application-driven arguments, this text covers not only a range of methods in use today, but also introduces promising new developments for the future, bringing the reader up-to-date with the state of the art in signal and image analysis. Covering basic principles as well as advanced concepts and applications, and with examples and homework exercises, this is an invaluable resource for graduate students, researchers, and industry practitioners in a range of fields including signal and image processing, biomedical engineering, and computer graphics.
Author |
: Luc Florack |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 321 |
Release |
: 2012-01-12 |
ISBN-10 |
: 9781447123538 |
ISBN-13 |
: 1447123530 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Mathematical Methods for Signal and Image Analysis and Representation by : Luc Florack
Mathematical Methods for Signal and Image Analysis and Representation presents the mathematical methodology for generic image analysis tasks. In the context of this book an image may be any m-dimensional empirical signal living on an n-dimensional smooth manifold (typically, but not necessarily, a subset of spacetime). The existing literature on image methodology is rather scattered and often limited to either a deterministic or a statistical point of view. In contrast, this book brings together these seemingly different points of view in order to stress their conceptual relations and formal analogies. Furthermore, it does not focus on specific applications, although some are detailed for the sake of illustration, but on the methodological frameworks on which such applications are built, making it an ideal companion for those seeking a rigorous methodological basis for specific algorithms as well as for those interested in the fundamental methodology per se. Covering many topics at the forefront of current research, including anisotropic diffusion filtering of tensor fields, this book will be of particular interest to graduate and postgraduate students and researchers in the fields of computer vision, medical imaging and visual perception.
Author |
: Xavier Pennec |
Publisher |
: Academic Press |
Total Pages |
: 636 |
Release |
: 2019-09-02 |
ISBN-10 |
: 9780128147269 |
ISBN-13 |
: 0128147261 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Riemannian Geometric Statistics in Medical Image Analysis by : Xavier Pennec
Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: - The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs - Applications of statistics on manifolds and shape spaces in medical image computing - Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science. - A complete reference covering both the foundations and state-of-the-art methods - Edited and authored by leading researchers in the field - Contains theory, examples, applications, and algorithms - Gives an overview of current research challenges and future applications
Author |
: Frank Nielsen |
Publisher |
: Springer |
Total Pages |
: 312 |
Release |
: 2016-11-24 |
ISBN-10 |
: 9783319470580 |
ISBN-13 |
: 3319470582 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Computational Information Geometry by : Frank Nielsen
This book focuses on the application and development of information geometric methods in the analysis, classification and retrieval of images and signals. It provides introductory chapters to help those new to information geometry and applies the theory to several applications. This area has developed rapidly over recent years, propelled by the major theoretical developments in information geometry, efficient data and image acquisition and the desire to process and interpret large databases of digital information. The book addresses both the transfer of methodology to practitioners involved in database analysis and in its efficient computational implementation.
Author |
: Ravikanth Malladi |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 151 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642559877 |
ISBN-13 |
: 3642559875 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Geometric Methods in Bio-Medical Image Processing by : Ravikanth Malladi
The genesis of this book goes back to the conference held at the University of Bologna, June 1999, on collaborative work between the University of California at Berkeley and the University of Bologna. The book, in its present form, is a compilation of some of the recent work using geometric partial differential equations and the level set methodology in medical and biomedical image analysis. The book not only gives a good overview on some of the traditional applications in medical imagery such as, CT, MR, Ultrasound, but also shows some new and exciting applications in the area of Life Sciences, such as confocal microscope image understanding.
Author |
: Stanley Osher |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 523 |
Release |
: 2007-05-08 |
ISBN-10 |
: 9780387218106 |
ISBN-13 |
: 0387218106 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Geometric Level Set Methods in Imaging, Vision, and Graphics by : Stanley Osher
Here is, for the first time, a book that clearly explains and applies new level set methods to problems and applications in computer vision, graphics, and imaging. It is an essential compilation of survey chapters from the leading researchers in the field. The applications of the methods are emphasized.
Author |
: Jong Chul Ye |
Publisher |
: Springer Nature |
Total Pages |
: 338 |
Release |
: 2022-01-05 |
ISBN-10 |
: 9789811660467 |
ISBN-13 |
: 9811660468 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Geometry of Deep Learning by : Jong Chul Ye
The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems. Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.
Author |
: Cris L. Luengo Hendriks |
Publisher |
: Springer |
Total Pages |
: 544 |
Release |
: 2013-05-13 |
ISBN-10 |
: 9783642382949 |
ISBN-13 |
: 3642382940 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Mathematical Morphology and Its Applications to Signal and Image Processing by : Cris L. Luengo Hendriks
This book contains the refereed proceedings of the 11th International Symposium on Mathematical Morphology, ISMM 2013 held in Uppsala, Sweden, in May 2013. The 41 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 52 submissions. The papers are organized in topical sections on theory; trees and hierarchies; adaptive morphology; colour; manifolds and metrics; filtering; detectors and descriptors; and applications.
Author |
: Ljubiša Stanković |
Publisher |
: Springer |
Total Pages |
: 516 |
Release |
: 2018-12-01 |
ISBN-10 |
: 9783030035747 |
ISBN-13 |
: 3030035743 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Vertex-Frequency Analysis of Graph Signals by : Ljubiša Stanković
This book introduces new methods to analyze vertex-varying graph signals. In many real-world scenarios, the data sensing domain is not a regular grid, but a more complex network that consists of sensing points (vertices) and edges (relating the sensing points). Furthermore, sensing geometry or signal properties define the relation among sensed signal points. Even for the data sensed in the well-defined time or space domain, the introduction of new relationships among the sensing points may produce new insights in the analysis and result in more advanced data processing techniques. The data domain, in these cases and discussed in this book, is defined by a graph. Graphs exploit the fundamental relations among the data points. Processing of signals whose sensing domains are defined by graphs resulted in graph data processing as an emerging field in signal processing. Although signal processing techniques for the analysis of time-varying signals are well established, the corresponding graph signal processing equivalent approaches are still in their infancy. This book presents novel approaches to analyze vertex-varying graph signals. The vertex-frequency analysis methods use the Laplacian or adjacency matrix to establish connections between vertex and spectral (frequency) domain in order to analyze local signal behavior where edge connections are used for graph signal localization. The book applies combined concepts from time-frequency and wavelet analyses of classical signal processing to the analysis of graph signals. Covering analytical tools for vertex-varying applications, this book is of interest to researchers and practitioners in engineering, science, neuroscience, genome processing, just to name a few. It is also a valuable resource for postgraduate students and researchers looking to expand their knowledge of the vertex-frequency analysis theory and its applications. The book consists of 15 chapters contributed by 41 leading researches in the field.
Author |
: Guido Brunnett |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 512 |
Release |
: 2003-11-17 |
ISBN-10 |
: 3540401164 |
ISBN-13 |
: 9783540401162 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Geometric Modeling for Scientific Visualization by : Guido Brunnett
Geometric Modeling and Scientific Visualization are both established disciplines, each with their own series of workshops, conferences and journals. But clearly both disciplines overlap; this observation led to the idea of composing a book on Geometric Modeling for Scientific Visualization.