Geometric Aspects of Functional Analysis

Geometric Aspects of Functional Analysis
Author :
Publisher : Springer Nature
Total Pages : 346
Release :
ISBN-10 : 9783030360207
ISBN-13 : 3030360202
Rating : 4/5 (07 Downloads)

Synopsis Geometric Aspects of Functional Analysis by : Bo'az Klartag

Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.

Geometric Aspects of Functional Analysis

Geometric Aspects of Functional Analysis
Author :
Publisher : Springer
Total Pages : 459
Release :
ISBN-10 : 9783319094779
ISBN-13 : 3319094777
Rating : 4/5 (79 Downloads)

Synopsis Geometric Aspects of Functional Analysis by : Bo'az Klartag

As in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis. Most of the papers deal with different aspects of Asymptotic Geometric Analysis, understood in a broad sense; many continue the study of geometric and volumetric properties of convex bodies and log-concave measures in high-dimensions and in particular the mean-norm, mean-width, metric entropy, spectral-gap, thin-shell and slicing parameters, with applications to Dvoretzky and Central-Limit-type results. The study of spectral properties of various systems, matrices, operators and potentials is another central theme in this volume. As expected, probabilistic tools play a significant role and probabilistic questions regarding Gaussian noise stability, the Gaussian Free Field and First Passage Percolation are also addressed. The historical connection to the field of Classical Convexity is also well represented with new properties and applications of mixed-volumes. The interplay between the real convex and complex pluri-subharmonic settings continues to manifest itself in several additional articles. All contributions are original research papers and were subject to the usual refereeing standards.

Geometric Nonlinear Functional Analysis

Geometric Nonlinear Functional Analysis
Author :
Publisher : American Mathematical Soc.
Total Pages : 503
Release :
ISBN-10 : 9780821808351
ISBN-13 : 0821808354
Rating : 4/5 (51 Downloads)

Synopsis Geometric Nonlinear Functional Analysis by : Yoav Benyamini

A systematic study of geometric nonlinear functional analysis. The main theme is the study of uniformly continuous and Lipschitz functions between Banach spaces. This study leads to the classification of Banach spaces and of their important subsets in the uniform and Lipschitz categories.

Geometric Functional Analysis and its Applications

Geometric Functional Analysis and its Applications
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 146849371X
ISBN-13 : 9781468493719
Rating : 4/5 (1X Downloads)

Synopsis Geometric Functional Analysis and its Applications by : R. B. Holmes

This book has evolved from my experience over the past decade in teaching and doing research in functional analysis and certain of its appli cations. These applications are to optimization theory in general and to best approximation theory in particular. The geometric nature of the subjects has greatly influenced the approach to functional analysis presented herein, especially its basis on the unifying concept of convexity. Most of the major theorems either concern or depend on properties of convex sets; the others generally pertain to conjugate spaces or compactness properties, both of which topics are important for the proper setting and resolution of optimization problems. In consequence, and in contrast to most other treatments of functional analysis, there is no discussion of spectral theory, and only the most basic and general properties of linear operators are established. Some of the theoretical highlights of the book are the Banach space theorems associated with the names of Dixmier, Krein, James, Smulian, Bishop-Phelps, Brondsted-Rockafellar, and Bessaga-Pelczynski. Prior to these (and others) we establish to two most important principles of geometric functional analysis: the extended Krein-Milman theorem and the Hahn Banach principle, the latter appearing in ten different but equivalent formula tions (some of which are optimality criteria for convex programs). In addition, a good deal of attention is paid to properties and characterizations of conjugate spaces, especially reflexive spaces.

Geometric Analysis and Function Spaces

Geometric Analysis and Function Spaces
Author :
Publisher : American Mathematical Soc.
Total Pages : 224
Release :
ISBN-10 : 0821889257
ISBN-13 : 9780821889251
Rating : 4/5 (57 Downloads)

Synopsis Geometric Analysis and Function Spaces by : Steven George Krantz

This book brings into focus the synergistic interaction between analysis and geometry by examining a variety of topics in function theory, real analysis, harmonic analysis, several complex variables, and group actions. Krantz's approach is motivated by examples, both classical and modern, which highlight the symbiotic relationship between analysis and geometry. Creating a synthesis among a host of different topics, this book is useful to researchers in geometry and analysis and may be of interest to physicists, astronomers, and engineers in certain areas. The book is based on lectures presented at an NSF-CBMS Regional Conference held in May 1992.

Geometric Aspects of General Topology

Geometric Aspects of General Topology
Author :
Publisher : Springer Science & Business Media
Total Pages : 539
Release :
ISBN-10 : 9784431543978
ISBN-13 : 443154397X
Rating : 4/5 (78 Downloads)

Synopsis Geometric Aspects of General Topology by : Katsuro Sakai

This book is designed for graduate students to acquire knowledge of dimension theory, ANR theory (theory of retracts), and related topics. These two theories are connected with various fields in geometric topology and in general topology as well. Hence, for students who wish to research subjects in general and geometric topology, understanding these theories will be valuable. Many proofs are illustrated by figures or diagrams, making it easier to understand the ideas of those proofs. Although exercises as such are not included, some results are given with only a sketch of their proofs. Completing the proofs in detail provides good exercise and training for graduate students and will be useful in graduate classes or seminars. Researchers should also find this book very helpful, because it contains many subjects that are not presented in usual textbooks, e.g., dim X × I = dim X + 1 for a metrizable space X; the difference between the small and large inductive dimensions; a hereditarily infinite-dimensional space; the ANR-ness of locally contractible countable-dimensional metrizable spaces; an infinite-dimensional space with finite cohomological dimension; a dimension raising cell-like map; and a non-AR metric linear space. The final chapter enables students to understand how deeply related the two theories are. Simplicial complexes are very useful in topology and are indispensable for studying the theories of both dimension and ANRs. There are many textbooks from which some knowledge of these subjects can be obtained, but no textbook discusses non-locally finite simplicial complexes in detail. So, when we encounter them, we have to refer to the original papers. For instance, J.H.C. Whitehead's theorem on small subdivisions is very important, but its proof cannot be found in any textbook. The homotopy type of simplicial complexes is discussed in textbooks on algebraic topology using CW complexes, but geometrical arguments using simplicial complexes are rather easy.

Geometric Aspects of Probability Theory and Mathematical Statistics

Geometric Aspects of Probability Theory and Mathematical Statistics
Author :
Publisher : Springer Science & Business Media
Total Pages : 314
Release :
ISBN-10 : 9789401716871
ISBN-13 : 9401716870
Rating : 4/5 (71 Downloads)

Synopsis Geometric Aspects of Probability Theory and Mathematical Statistics by : V.V. Buldygin

It is well known that contemporary mathematics includes many disci plines. Among them the most important are: set theory, algebra, topology, geometry, functional analysis, probability theory, the theory of differential equations and some others. Furthermore, every mathematical discipline consists of several large sections in which specific problems are investigated and the corresponding technique is developed. For example, in general topology we have the following extensive chap ters: the theory of compact extensions of topological spaces, the theory of continuous mappings, cardinal-valued characteristics of topological spaces, the theory of set-valued (multi-valued) mappings, etc. Modern algebra is featured by the following domains: linear algebra, group theory, the theory of rings, universal algebras, lattice theory, category theory, and so on. Concerning modern probability theory, we can easily see that the clas sification of its domains is much more extensive: measure theory on ab stract spaces, Borel and cylindrical measures in infinite-dimensional vector spaces, classical limit theorems, ergodic theory, general stochastic processes, Markov processes, stochastical equations, mathematical statistics, informa tion theory and many others.

Geometric Function Theory and Non-linear Analysis

Geometric Function Theory and Non-linear Analysis
Author :
Publisher : Clarendon Press
Total Pages : 576
Release :
ISBN-10 : 0198509294
ISBN-13 : 9780198509295
Rating : 4/5 (94 Downloads)

Synopsis Geometric Function Theory and Non-linear Analysis by : Tadeusz Iwaniec

Iwaniec (math, Syracuse U.) and Martin (math, U. of Auckland) explain recent developments in the geometry of mappings, related to functions or deformations between subsets of the Euclidean n-space Rn and more generally between manifolds or other geometric objects. Material on mappings intersects with aspects of differential geometry, topology, partial differential equations, harmonic analysis, and the calculus of variations. Chapters cover topics such as conformal mappings, stability of the Mobius group, Sobolev theory and function spaces, the Liouville theorem, even dimensions, Picard and Montel theorems in space, uniformly quasiregular mappings, and quasiconformal groups. c. Book News Inc.

Analytic and Geometric Study of Stratified Spaces

Analytic and Geometric Study of Stratified Spaces
Author :
Publisher : Springer
Total Pages : 233
Release :
ISBN-10 : 9783540454366
ISBN-13 : 3540454365
Rating : 4/5 (66 Downloads)

Synopsis Analytic and Geometric Study of Stratified Spaces by : Markus J. Pflaum

The book provides an introduction to stratification theory leading the reader up to modern research topics in the field. The first part presents the basics of stratification theory, in particular the Whitney conditions and Mather's control theory, and introduces the notion of a smooth structure. Moreover, it explains how one can use smooth structures to transfer differential geometric and analytic methods from the arena of manifolds to stratified spaces. In the second part the methods established in the first part are applied to particular classes of stratified spaces like for example orbit spaces. Then a new de Rham theory for stratified spaces is established and finally the Hochschild (co)homology theory of smooth functions on certain classes of stratified spaces is studied. The book should be accessible to readers acquainted with the basics of topology, analysis and differential geometry.

Geometric Aspects of Functional Analysis

Geometric Aspects of Functional Analysis
Author :
Publisher :
Total Pages : 300
Release :
ISBN-10 : 3662184486
ISBN-13 : 9783662184486
Rating : 4/5 (86 Downloads)

Synopsis Geometric Aspects of Functional Analysis by : Joram Lindenstrauss