Geometric Applications Of Homotopy Theory I
Download Geometric Applications Of Homotopy Theory I full books in PDF, epub, and Kindle. Read online free Geometric Applications Of Homotopy Theory I ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Robert E. Mosher |
Publisher |
: Courier Corporation |
Total Pages |
: 226 |
Release |
: 2008-01-01 |
ISBN-10 |
: 9780486466644 |
ISBN-13 |
: 0486466647 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Cohomology Operations and Applications in Homotopy Theory by : Robert E. Mosher
Cohomology operations are at the center of a major area of activity in algebraic topology. This treatment explores the single most important variety of operations, the Steenrod squares. It constructs these operations, proves their major properties, and provides numerous applications, including several different techniques of homotopy theory useful for computation. 1968 edition.
Author |
: M. G. Barratt |
Publisher |
: Springer |
Total Pages |
: 470 |
Release |
: 2006-11-15 |
ISBN-10 |
: 9783540358091 |
ISBN-13 |
: 3540358099 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Geometric Applications of Homotopy Theory I by : M. G. Barratt
Author |
: M.G. Barratt |
Publisher |
: Springer |
Total Pages |
: 498 |
Release |
: 2006-11-15 |
ISBN-10 |
: 9783540358084 |
ISBN-13 |
: 3540358080 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Geometric Applications of Homotopy Theory II by : M.G. Barratt
Author |
: Michael G. Barratt |
Publisher |
: |
Total Pages |
: 474 |
Release |
: 1978 |
ISBN-10 |
: STANFORD:36105031895225 |
ISBN-13 |
: |
Rating |
: 4/5 (25 Downloads) |
Synopsis Geometric Applications of Homotopy Theory by : Michael G. Barratt
Author |
: Frank Neumann |
Publisher |
: Springer Nature |
Total Pages |
: 223 |
Release |
: 2021-09-29 |
ISBN-10 |
: 9783030789770 |
ISBN-13 |
: 3030789772 |
Rating |
: 4/5 (70 Downloads) |
Synopsis Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects by : Frank Neumann
This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.
Author |
: S. Lefschetz |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 190 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781468493672 |
ISBN-13 |
: 1468493671 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Applications of Algebraic Topology by : S. Lefschetz
This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.
Author |
: Haynes Miller |
Publisher |
: CRC Press |
Total Pages |
: 1142 |
Release |
: 2020-01-23 |
ISBN-10 |
: 9781351251600 |
ISBN-13 |
: 1351251600 |
Rating |
: 4/5 (00 Downloads) |
Synopsis Handbook of Homotopy Theory by : Haynes Miller
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.
Author |
: Bertrand Toën |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 242 |
Release |
: 2008 |
ISBN-10 |
: 9780821840993 |
ISBN-13 |
: 0821840991 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Homotopical Algebraic Geometry II: Geometric Stacks and Applications by : Bertrand Toën
This is the second part of a series of papers called "HAG", devoted to developing the foundations of homotopical algebraic geometry. The authors start by defining and studying generalizations of standard notions of linear algebra in an abstract monoidal model category, such as derivations, étale and smooth morphisms, flat and projective modules, etc. They then use their theory of stacks over model categories to define a general notion of geometric stack over a base symmetric monoidal model category $C$, and prove that this notion satisfies the expected properties.
Author |
: Yves Felix |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 589 |
Release |
: 2001 |
ISBN-10 |
: 9780387950686 |
ISBN-13 |
: 0387950680 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Rational Homotopy Theory by : Yves Felix
This is a long awaited book on rational homotopy theory which contains all the main theorems with complete proofs, and more elementary proofs for many results that were proved ten or fifteen years ago. The authors added a frist section on classical algebraic topology to make the book accessible to students with only little background in algebraic topology.
Author |
: Bjorn Ian Dundas |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 228 |
Release |
: 2007-07-11 |
ISBN-10 |
: 9783540458975 |
ISBN-13 |
: 3540458972 |
Rating |
: 4/5 (75 Downloads) |
Synopsis Motivic Homotopy Theory by : Bjorn Ian Dundas
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.