Geometric And Spectral Analysis
Download Geometric And Spectral Analysis full books in PDF, epub, and Kindle. Read online free Geometric And Spectral Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: L. H. Koopmans |
Publisher |
: Academic Press |
Total Pages |
: 383 |
Release |
: 2014-05-12 |
ISBN-10 |
: 9781483218540 |
ISBN-13 |
: 1483218546 |
Rating |
: 4/5 (40 Downloads) |
Synopsis The Spectral Analysis of Time Series by : L. H. Koopmans
The Spectral Analysis of Time Series describes the techniques and theory of the frequency domain analysis of time series. The book discusses the physical processes and the basic features of models of time series. The central feature of all models is the existence of a spectrum by which the time series is decomposed into a linear combination of sines and cosines. The investigator can used Fourier decompositions or other kinds of spectrals in time series analysis. The text explains the Wiener theory of spectral analysis, the spectral representation for weakly stationary stochastic processes, and the real spectral representation. The book also discusses sampling, aliasing, discrete-time models, linear filters that have general properties with applications to continuous-time processes, and the applications of multivariate spectral models. The text describes finite parameter models, the distribution theory of spectral estimates with applications to statistical inference, as well as sampling properties of spectral estimates, experimental design, and spectral computations. The book is intended either as a textbook or for individual reading for one-semester or two-quarter course for students of time series analysis users. It is also suitable for mathematicians or professors of calculus, statistics, and advanced mathematics.
Author |
: Motoko Kotani |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 363 |
Release |
: 2009 |
ISBN-10 |
: 9780821842690 |
ISBN-13 |
: 0821842692 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Spectral Analysis in Geometry and Number Theory by : Motoko Kotani
This volume is an outgrowth of an international conference in honor of Toshikazu Sunada on the occasion of his sixtieth birthday. The conference took place at Nagoya University, Japan, in 2007. Sunada's research covers a wide spectrum of spectral analysis, including interactions among geometry, number theory, dynamical systems, probability theory and mathematical physics. Readers will find papers on trace formulae, isospectral problems, zeta functions, quantum ergodicity, random waves, discrete geometric analysis, value distribution, and semiclassical analysis. This volume also contains an article that presents an overview of Sunada's work in mathematics up to the age of sixty.
Author |
: Jing Hua |
Publisher |
: Academic Press |
Total Pages |
: 152 |
Release |
: 2019-10-26 |
ISBN-10 |
: 9780128138427 |
ISBN-13 |
: 0128138424 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Spectral Geometry of Shapes by : Jing Hua
Spectral Geometry of Shapes presents unique shape analysis approaches based on shape spectrum in differential geometry. It provides insights on how to develop geometry-based methods for 3D shape analysis. The book is an ideal learning resource for graduate students and researchers in computer science, computer engineering and applied mathematics who have an interest in 3D shape analysis, shape motion analysis, image analysis, medical image analysis, computer vision and computer graphics. Due to the rapid advancement of 3D acquisition technologies there has been a big increase in 3D shape data that requires a variety of shape analysis methods, hence the need for this comprehensive resource.
Author |
: Bo'az Klartag |
Publisher |
: Springer |
Total Pages |
: 459 |
Release |
: 2014-10-08 |
ISBN-10 |
: 9783319094779 |
ISBN-13 |
: 3319094777 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Geometric Aspects of Functional Analysis by : Bo'az Klartag
As in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis. Most of the papers deal with different aspects of Asymptotic Geometric Analysis, understood in a broad sense; many continue the study of geometric and volumetric properties of convex bodies and log-concave measures in high-dimensions and in particular the mean-norm, mean-width, metric entropy, spectral-gap, thin-shell and slicing parameters, with applications to Dvoretzky and Central-Limit-type results. The study of spectral properties of various systems, matrices, operators and potentials is another central theme in this volume. As expected, probabilistic tools play a significant role and probabilistic questions regarding Gaussian noise stability, the Gaussian Free Field and First Passage Percolation are also addressed. The historical connection to the field of Classical Convexity is also well represented with new properties and applications of mixed-volumes. The interplay between the real convex and complex pluri-subharmonic settings continues to manifest itself in several additional articles. All contributions are original research papers and were subject to the usual refereeing standards.
Author |
: R. B. Holmes |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2012-12-12 |
ISBN-10 |
: 146849371X |
ISBN-13 |
: 9781468493719 |
Rating |
: 4/5 (1X Downloads) |
Synopsis Geometric Functional Analysis and its Applications by : R. B. Holmes
This book has evolved from my experience over the past decade in teaching and doing research in functional analysis and certain of its appli cations. These applications are to optimization theory in general and to best approximation theory in particular. The geometric nature of the subjects has greatly influenced the approach to functional analysis presented herein, especially its basis on the unifying concept of convexity. Most of the major theorems either concern or depend on properties of convex sets; the others generally pertain to conjugate spaces or compactness properties, both of which topics are important for the proper setting and resolution of optimization problems. In consequence, and in contrast to most other treatments of functional analysis, there is no discussion of spectral theory, and only the most basic and general properties of linear operators are established. Some of the theoretical highlights of the book are the Banach space theorems associated with the names of Dixmier, Krein, James, Smulian, Bishop-Phelps, Brondsted-Rockafellar, and Bessaga-Pelczynski. Prior to these (and others) we establish to two most important principles of geometric functional analysis: the extended Krein-Milman theorem and the Hahn Banach principle, the latter appearing in ten different but equivalent formula tions (some of which are optimality criteria for convex programs). In addition, a good deal of attention is paid to properties and characterizations of conjugate spaces, especially reflexive spaces.
Author |
: Stefano Pigola |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 294 |
Release |
: 2008-05-28 |
ISBN-10 |
: 9783764386429 |
ISBN-13 |
: 3764386428 |
Rating |
: 4/5 (29 Downloads) |
Synopsis Vanishing and Finiteness Results in Geometric Analysis by : Stefano Pigola
This book describes very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods, from spectral theory and qualitative properties of solutions of PDEs, to comparison theorems in Riemannian geometry and potential theory.
Author |
: Matthias Keller |
Publisher |
: Cambridge University Press |
Total Pages |
: 493 |
Release |
: 2020-08-20 |
ISBN-10 |
: 9781108587389 |
ISBN-13 |
: 1108587380 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Analysis and Geometry on Graphs and Manifolds by : Matthias Keller
The interplay of geometry, spectral theory and stochastics has a long and fruitful history, and is the driving force behind many developments in modern mathematics. Bringing together contributions from a 2017 conference at the University of Potsdam, this volume focuses on global effects of local properties. Exploring the similarities and differences between the discrete and the continuous settings is of great interest to both researchers and graduate students in geometric analysis. The range of survey articles presented in this volume give an expository overview of various topics, including curvature, the effects of geometry on the spectrum, geometric group theory, and spectral theory of Laplacian and Schrödinger operators. Also included are shorter articles focusing on specific techniques and problems, allowing the reader to get to the heart of several key topics.
Author |
: Alexandre Girouard |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 298 |
Release |
: 2017-10-30 |
ISBN-10 |
: 9781470426651 |
ISBN-13 |
: 147042665X |
Rating |
: 4/5 (51 Downloads) |
Synopsis Geometric and Computational Spectral Theory by : Alexandre Girouard
A co-publication of the AMS and Centre de Recherches Mathématiques The book is a collection of lecture notes and survey papers based on the mini-courses given by leading experts at the 2015 Séminaire de Mathématiques Supérieures on Geometric and Computational Spectral Theory, held from June 15–26, 2015, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. The volume covers a broad variety of topics in spectral theory, highlighting its connections to differential geometry, mathematical physics and numerical analysis, bringing together the theoretical and computational approaches to spectral theory, and emphasizing the interplay between the two.
Author |
: Motoko Kotani |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 363 |
Release |
: 2009 |
ISBN-10 |
: 9780821842690 |
ISBN-13 |
: 0821842692 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Spectral Analysis in Geometry and Number Theory by : Motoko Kotani
This volume is an outgrowth of an international conference in honor of Toshikazu Sunada on the occasion of his sixtieth birthday. The conference took place at Nagoya University, Japan, in 2007. Sunada's research covers a wide spectrum of spectral analysis, including interactions among geometry, number theory, dynamical systems, probability theory and mathematical physics. Readers will find papers on trace formulae, isospectral problems, zeta functions, quantum ergodicity, random waves, discrete geometric analysis, value distribution, and semiclassical analysis. This volume also contains an article that presents an overview of Sunada's work in mathematics up to the age of sixty.
Author |
: Stefan Hildebrandt |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 663 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642556272 |
ISBN-13 |
: 3642556272 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Geometric Analysis and Nonlinear Partial Differential Equations by : Stefan Hildebrandt
This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.