The Nature of Code

The Nature of Code
Author :
Publisher : No Starch Press
Total Pages : 642
Release :
ISBN-10 : 9781718503717
ISBN-13 : 1718503717
Rating : 4/5 (17 Downloads)

Synopsis The Nature of Code by : Daniel Shiffman

All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.

Genetic and Evolutionary Computation

Genetic and Evolutionary Computation
Author :
Publisher : John Wiley & Sons
Total Pages : 249
Release :
ISBN-10 : 9781119956785
ISBN-13 : 1119956781
Rating : 4/5 (85 Downloads)

Synopsis Genetic and Evolutionary Computation by : Stephen L. Smith

Genetic and Evolutionary Computation: Medical Applications provides an overview of the range of GEC techniques being applied to medicine and healthcare in a context that is relevant not only for existing GEC practitioners but also those from other disciplines, particularly health professionals. There is rapidly increasing interest in applying evolutionary computation to problems in medicine, but to date no text that introduces evolutionary computation in a medical context. By explaining the basic introductory theory, typical application areas and detailed implementation in one coherent volume, this book will appeal to a wide audience from software developers to medical scientists. Centred around a set of nine case studies on the application of GEC to different areas of medicine, the book offers an overview of applications of GEC to medicine, describes applications in which GEC is used to analyse medical images and data sets, derive advanced models, and suggest diagnoses and treatments, finally providing hints about possible future advancements of genetic and evolutionary computation in medicine. Explores the rapidly growing area of genetic and evolutionary computation in context of its viable and exciting payoffs in the field of medical applications. Explains the underlying theory, typical applications and detailed implementation. Includes general sections about the applications of GEC to medicine and their expected future developments, as well as specific sections on applications of GEC to medical imaging, analysis of medical data sets, advanced modelling, diagnosis and treatment. Features a wide range of tables, illustrations diagrams and photographs.

Evolutionary Algorithms for Solving Multi-Objective Problems

Evolutionary Algorithms for Solving Multi-Objective Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 810
Release :
ISBN-10 : 9780387367972
ISBN-13 : 0387367977
Rating : 4/5 (72 Downloads)

Synopsis Evolutionary Algorithms for Solving Multi-Objective Problems by : Carlos Coello Coello

This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.

Evolutionary Computation

Evolutionary Computation
Author :
Publisher : MIT Press
Total Pages : 267
Release :
ISBN-10 : 9780262041942
ISBN-13 : 0262041944
Rating : 4/5 (42 Downloads)

Synopsis Evolutionary Computation by : Kenneth A. De Jong

This text is an introduction to the field of evolutionary computation. It approaches evolution strategies and genetic programming, as instances of a more general class of evolutionary algorithms.

Introduction to Evolutionary Computing

Introduction to Evolutionary Computing
Author :
Publisher : Springer Science & Business Media
Total Pages : 328
Release :
ISBN-10 : 3540401849
ISBN-13 : 9783540401841
Rating : 4/5 (49 Downloads)

Synopsis Introduction to Evolutionary Computing by : A.E. Eiben

The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.

Genetic Algorithms + Data Structures = Evolution Programs

Genetic Algorithms + Data Structures = Evolution Programs
Author :
Publisher : Springer Science & Business Media
Total Pages : 392
Release :
ISBN-10 : 9783662033159
ISBN-13 : 3662033151
Rating : 4/5 (59 Downloads)

Synopsis Genetic Algorithms + Data Structures = Evolution Programs by : Zbigniew Michalewicz

Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques is still growing, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science. The book is self-contained and the only prerequisite is basic undergraduate mathematics. This third edition has been substantially revised and extended by three new chapters and by additional appendices containing working material to cover recent developments and a change in the perception of evolutionary computation.

Genetic Programming Theory and Practice XVII

Genetic Programming Theory and Practice XVII
Author :
Publisher : Springer Nature
Total Pages : 423
Release :
ISBN-10 : 9783030399580
ISBN-13 : 3030399583
Rating : 4/5 (80 Downloads)

Synopsis Genetic Programming Theory and Practice XVII by : Wolfgang Banzhaf

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. In this year’s edition, the topics covered include many of the most important issues and research questions in the field, such as: opportune application domains for GP-based methods, game playing and co-evolutionary search, symbolic regression and efficient learning strategies, encodings and representations for GP, schema theorems, and new selection mechanisms.The volume includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.

Representations for Genetic and Evolutionary Algorithms

Representations for Genetic and Evolutionary Algorithms
Author :
Publisher : Physica
Total Pages : 295
Release :
ISBN-10 : 9783642880940
ISBN-13 : 3642880940
Rating : 4/5 (40 Downloads)

Synopsis Representations for Genetic and Evolutionary Algorithms by : Franz Rothlauf

In the field of genetic and evolutionary algorithms (GEAs), much theory and empirical study has been heaped upon operators and test problems, but problem representation has often been taken as given. This monograph breaks with this tradition and studies a number of critical elements of a theory of representations for GEAs and applies them to the empirical study of various important idealized test functions and problems of commercial import. The book considers basic concepts of representations, such as redundancy, scaling and locality and describes how GEAs'performance is influenced. Using the developed theory representations can be analyzed and designed in a theory-guided manner. The theoretical concepts are used as examples for efficiently solving integer optimization problems and network design problems. The results show that proper representations are crucial for GEAs'success.

An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms
Author :
Publisher : MIT Press
Total Pages : 226
Release :
ISBN-10 : 0262631857
ISBN-13 : 9780262631853
Rating : 4/5 (57 Downloads)

Synopsis An Introduction to Genetic Algorithms by : Melanie Mitchell

Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.