Generalized Structured Component Analysis
Download Generalized Structured Component Analysis full books in PDF, epub, and Kindle. Read online free Generalized Structured Component Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Heungsun Hwang |
Publisher |
: CRC Press |
Total Pages |
: 346 |
Release |
: 2014-12-11 |
ISBN-10 |
: 9781466592940 |
ISBN-13 |
: 146659294X |
Rating |
: 4/5 (40 Downloads) |
Synopsis Generalized Structured Component Analysis by : Heungsun Hwang
Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new approach and apply it to their own research. The book emphasizes conceptual discussions throughout while relegating more technical intricacies to the chapter appendices. Most chapters compare generalized structured component analysis to partial least squares path modeling to show how the two component-based approaches differ when addressing an identical issue. The authors also offer a free, online software program (GeSCA) and an Excel-based software program (XLSTAT) for implementing the basic features of generalized structured component analysis.
Author |
: Heungsun Hwang |
Publisher |
: CRC Press |
Total Pages |
: 338 |
Release |
: 2014-12-11 |
ISBN-10 |
: 9781466592957 |
ISBN-13 |
: 1466592958 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Generalized Structured Component Analysis by : Heungsun Hwang
Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of JapanDeveloped by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured componen
Author |
: Heungsun Hwang |
Publisher |
: CRC Press |
Total Pages |
: 342 |
Release |
: 2020-12-18 |
ISBN-10 |
: 0367738759 |
ISBN-13 |
: 9780367738754 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Generalized Structured Component Analysis by : Heungsun Hwang
Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of Japan Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new approach and apply it to their own research. The book emphasizes conceptual discussions throughout while relegating more technical intricacies to the chapter appendices. Most chapters compare generalized structured component analysis to partial least squares path modeling to show how the two component-based approaches differ when addressing an identical issue. The authors also offer a free, online software program (GeSCA) and an Excel-based software program (XLSTAT) for implementing the basic features of generalized structured component analysis.
Author |
: Jörg Henseler |
Publisher |
: Guilford Publications |
Total Pages |
: 387 |
Release |
: 2020-12-24 |
ISBN-10 |
: 9781462545612 |
ISBN-13 |
: 1462545610 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Composite-Based Structural Equation Modeling by : Jörg Henseler
This book presents powerful tools for integrating interrelated composites--such as capabilities, policies, treatments, indices, and systems--into structural equation modeling (SEM). Jörg Henseler introduces the types of research questions that can be addressed with composite-based SEM and explores the differences between composite- and factor-based SEM, variance- and covariance-based SEM, and emergent and latent variables. Using rich illustrations and walked-through data sets, the book covers how to specify, identify, estimate, and assess composite models using partial least squares path modeling, maximum likelihood, and other estimators, as well as how to interpret findings and report the results. Advanced topics include confirmatory composite analysis, mediation analysis, second-order constructs, interaction effects, and importance–performance analysis. Most chapters conclude with software tutorials for ADANCO and the R package cSEM. The companion website includes data files and syntax for the book's examples, along with presentation slides.
Author |
: J. Christopher Westland |
Publisher |
: Springer |
Total Pages |
: 184 |
Release |
: 2015-04-25 |
ISBN-10 |
: 9783319165073 |
ISBN-13 |
: 3319165070 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Structural Equation Models by : J. Christopher Westland
This compact reference surveys the full range of available structural equation modeling (SEM) methodologies. It reviews applications in a broad range of disciplines, particularly in the social sciences where many key concepts are not directly observable. This is the first book to present SEM’s development in its proper historical context–essential to understanding the application, strengths and weaknesses of each particular method. This book also surveys the emerging path and network approaches that complement and enhance SEM, and that will grow importance in the near future. SEM’s ability to accommodate unobservable theory constructs through latent variables is of significant importance to social scientists. Latent variable theory and application are comprehensively explained and methods are presented for extending their power, including guidelines for data preparation, sample size calculation and the special treatment of Likert scale data. Tables of software, methodologies and fit statistics provide a concise reference for any research program, helping assure that its conclusions are defensible and publishable.
Author |
: Joseph F. Hair Jr. |
Publisher |
: Springer Nature |
Total Pages |
: 208 |
Release |
: 2021-11-03 |
ISBN-10 |
: 9783030805197 |
ISBN-13 |
: 3030805190 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R by : Joseph F. Hair Jr.
Partial least squares structural equation modeling (PLS-SEM) has become a standard approach for analyzing complex inter-relationships between observed and latent variables. Researchers appreciate the many advantages of PLS-SEM such as the possibility to estimate very complex models and the method’s flexibility in terms of data requirements and measurement specification. This practical open access guide provides a step-by-step treatment of the major choices in analyzing PLS path models using R, a free software environment for statistical computing, which runs on Windows, macOS, and UNIX computer platforms. Adopting the R software’s SEMinR package, which brings a friendly syntax to creating and estimating structural equation models, each chapter offers a concise overview of relevant topics and metrics, followed by an in-depth description of a case study. Simple instructions give readers the “how-tos” of using SEMinR to obtain solutions and document their results. Rules of thumb in every chapter provide guidance on best practices in the application and interpretation of PLS-SEM.
Author |
: Aapo Hyvärinen |
Publisher |
: John Wiley & Sons |
Total Pages |
: 505 |
Release |
: 2004-04-05 |
ISBN-10 |
: 9780471464198 |
ISBN-13 |
: 0471464198 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Independent Component Analysis by : Aapo Hyvärinen
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.
Author |
: I.T. Jolliffe |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 283 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9781475719048 |
ISBN-13 |
: 1475719043 |
Rating |
: 4/5 (48 Downloads) |
Synopsis Principal Component Analysis by : I.T. Jolliffe
Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.
Author |
: Lang Wu |
Publisher |
: CRC Press |
Total Pages |
: 431 |
Release |
: 2009-11-11 |
ISBN-10 |
: 1420074083 |
ISBN-13 |
: 9781420074086 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Mixed Effects Models for Complex Data by : Lang Wu
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Author |
: Haruo Yanai |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 244 |
Release |
: 2011-04-06 |
ISBN-10 |
: 9781441998873 |
ISBN-13 |
: 144199887X |
Rating |
: 4/5 (73 Downloads) |
Synopsis Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition by : Haruo Yanai
Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space. This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields.