Generalized Linear Models for Categorical and Continuous Limited Dependent Variables

Generalized Linear Models for Categorical and Continuous Limited Dependent Variables
Author :
Publisher : CRC Press
Total Pages : 310
Release :
ISBN-10 : 9781466551732
ISBN-13 : 1466551739
Rating : 4/5 (32 Downloads)

Synopsis Generalized Linear Models for Categorical and Continuous Limited Dependent Variables by : Michael Smithson

Generalized Linear Models for Categorical and Continuous Limited Dependent Variables is designed for graduate students and researchers in the behavioral, social, health, and medical sciences. It incorporates examples of truncated counts, censored continuous variables, and doubly bounded continuous variables, such as percentages. The book provides broad, but unified, coverage, and the authors integrate the concepts and ideas shared across models and types of data, especially regarding conceptual links between discrete and continuous limited dependent variables. The authors argue that these dependent variables are, if anything, more common throughout the human sciences than the kind that suit linear regression. They cover special cases or extensions of models, estimation methods, model diagnostics, and, of course, software. They also discuss bounded continuous variables, boundary-inflated models, and methods for modeling heteroscedasticity. Wherever possible, the authors have illustrated concepts, models, and techniques with real or realistic datasets and demonstrations in R and Stata, and each chapter includes several exercises at the end. The illustrations and exercises help readers build conceptual understanding and fluency in using these techniques. At several points the authors bring together material that has been previously scattered across the literature in journal articles, software package documentation files, and blogs. These features help students learn to choose the appropriate models for their purpose.

Generalized Linear Models for Categorical and Continuous Limited Dependent Variables

Generalized Linear Models for Categorical and Continuous Limited Dependent Variables
Author :
Publisher : CRC Press
Total Pages : 300
Release :
ISBN-10 : 9781466551756
ISBN-13 : 1466551755
Rating : 4/5 (56 Downloads)

Synopsis Generalized Linear Models for Categorical and Continuous Limited Dependent Variables by : Michael Smithson

Generalized Linear Models for Categorical and Continuous Limited Dependent Variables is designed for graduate students and researchers in the behavioral, social, health, and medical sciences. It incorporates examples of truncated counts, censored continuous variables, and doubly bounded continuous variables, such as percentages.The book provides br

Regression Models for Categorical and Limited Dependent Variables

Regression Models for Categorical and Limited Dependent Variables
Author :
Publisher : SAGE
Total Pages : 334
Release :
ISBN-10 : 0803973748
ISBN-13 : 9780803973749
Rating : 4/5 (48 Downloads)

Synopsis Regression Models for Categorical and Limited Dependent Variables by : J. Scott Long

Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.

Regression Models for Categorical Dependent Variables Using Stata, Second Edition

Regression Models for Categorical Dependent Variables Using Stata, Second Edition
Author :
Publisher : Stata Press
Total Pages : 559
Release :
ISBN-10 : 9781597180115
ISBN-13 : 1597180114
Rating : 4/5 (15 Downloads)

Synopsis Regression Models for Categorical Dependent Variables Using Stata, Second Edition by : J. Scott Long

The goal of the book is to make easier to carry out the computations necessary for the full interpretation of regression nonlinear models for categorical outcomes usign Stata.

Applying Generalized Linear Models

Applying Generalized Linear Models
Author :
Publisher : Springer Science & Business Media
Total Pages : 265
Release :
ISBN-10 : 9780387227306
ISBN-13 : 038722730X
Rating : 4/5 (06 Downloads)

Synopsis Applying Generalized Linear Models by : James K. Lindsey

This book describes how generalised linear modelling procedures can be used in many different fields, without becoming entangled in problems of statistical inference. The author shows the unity of many of the commonly used models and provides readers with a taste of many different areas, such as survival models, time series, and spatial analysis, and of their unity. As such, this book will appeal to applied statisticians and to scientists having a basic grounding in modern statistics. With many exercises at the end of each chapter, it will equally constitute an excellent text for teaching applied statistics students and non- statistics majors. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, being familiar at least with the analysis of the simpler normal linear models, regression and ANOVA.

Generalized Linear Models for Bounded and Limited Quantitative Variables

Generalized Linear Models for Bounded and Limited Quantitative Variables
Author :
Publisher : SAGE Publications
Total Pages : 137
Release :
ISBN-10 : 9781544334547
ISBN-13 : 1544334540
Rating : 4/5 (47 Downloads)

Synopsis Generalized Linear Models for Bounded and Limited Quantitative Variables by : Michael Smithson

This book introduces researchers and students to the concepts and generalized linear models for analyzing quantitative random variables that have one or more bounds. Examples of bounded variables include the percentage of a population eligible to vote (bounded from 0 to 100), or reaction time in milliseconds (bounded below by 0). The human sciences deal in many variables that are bounded. Ignoring bounds can result in misestimation and improper statistical inference. Michael Smithson and Yiyun Shou′s book brings together material on the analysis of limited and bounded variables that is scattered across the literature in several disciplines, and presents it in a style that is both more accessible and up-to-date. The authors provide worked examples in each chapter using real datasets from a variety of disciplines. The software used for the examples include R, SAS, and Stata. The data, software code, and detailed explanations of the example models are available on an accompanying website.

Generalized Linear Models

Generalized Linear Models
Author :
Publisher : Routledge
Total Pages : 536
Release :
ISBN-10 : 9781351445849
ISBN-13 : 1351445847
Rating : 4/5 (49 Downloads)

Synopsis Generalized Linear Models by : P. McCullagh

The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and ot

Regression With Social Data

Regression With Social Data
Author :
Publisher : John Wiley & Sons
Total Pages : 560
Release :
ISBN-10 : 9780471677550
ISBN-13 : 0471677558
Rating : 4/5 (50 Downloads)

Synopsis Regression With Social Data by : Alfred DeMaris

An accessible introduction to the use of regression analysis in the social sciences Regression with Social Data: Modeling Continuous and Limited Response Variables represents the most complete and fully integrated coverage of regression modeling currently available for graduate-level behavioral science students and practitioners. Covering techniques that span the full spectrum of levels of measurement for both continuous and limited response variables, and using examples taken from such disciplines as sociology, psychology, political science, and public health, the author succeeds in demystifying an academically rigorous subject and making it accessible to a wider audience. Content includes coverage of: Logit, probit, scobit, truncated, and censored regressions Multiple regression with ANOVA and ANCOVA models Binary and multinomial response models Poisson, negative binomial, and other regression models for event-count data Survival analysis using multistate, multiepisode, and interval-censored survival models Concepts are reinforced throughout with numerous chapter problems, exercises, and real data sets. Step-by-step solutions plus an appendix of mathematical tutorials make even complex problems accessible to readers with only moderate math skills. The book’s logical flow, wide applicability, and uniquely comprehensive coverage make it both an ideal text for a variety of graduate course settings and a useful reference for practicing researchers in the field.

Regression & Linear Modeling

Regression & Linear Modeling
Author :
Publisher : SAGE Publications
Total Pages : 489
Release :
ISBN-10 : 9781506302751
ISBN-13 : 1506302750
Rating : 4/5 (51 Downloads)

Synopsis Regression & Linear Modeling by : Jason W. Osborne

In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.