Generalized Convexity and Related Topics

Generalized Convexity and Related Topics
Author :
Publisher : Springer Science & Business Media
Total Pages : 465
Release :
ISBN-10 : 9783540370079
ISBN-13 : 3540370072
Rating : 4/5 (79 Downloads)

Synopsis Generalized Convexity and Related Topics by : Igor V. Konnov

The book contains invited papers by well-known experts on a wide range of topics (economics, variational analysis, probability etc.) closely related to convexity and generalized convexity, and refereed contributions of specialists from the world on current research on generalized convexity and applications, in particular, to optimization, economics and operations research.

Generalized Convexity and Optimization

Generalized Convexity and Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 252
Release :
ISBN-10 : 9783540708766
ISBN-13 : 3540708766
Rating : 4/5 (66 Downloads)

Synopsis Generalized Convexity and Optimization by : Alberto Cambini

The authors have written a rigorous yet elementary and self-contained book to present, in a unified framework, generalized convex functions. The book also includes numerous exercises and two appendices which list the findings consulted.

Generalized Convexity

Generalized Convexity
Author :
Publisher : Springer Science & Business Media
Total Pages : 406
Release :
ISBN-10 : 9783642468025
ISBN-13 : 3642468020
Rating : 4/5 (25 Downloads)

Synopsis Generalized Convexity by : Sandor Komlosi

Generalizations of the classical concept of a convex function have been proposed in various fields such as economics, management science, engineering, statistics and applied sciences during the second half of this century. In addition to new results in more established areas of generalized convexity, this book presents several important developments in recently emerging areas. Also, a number of interesting applications are reported.

Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization

Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization
Author :
Publisher : CRC Press
Total Pages : 294
Release :
ISBN-10 : 9781439868218
ISBN-13 : 1439868212
Rating : 4/5 (18 Downloads)

Synopsis Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization by : Qamrul Hasan Ansari

Until now, no book addressed convexity, monotonicity, and variational inequalities together. Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization covers all three topics, including new variational inequality problems defined by a bifunction.The first part of the book focuses on generalized convexity and generalized

Handbook of Generalized Convexity and Generalized Monotonicity

Handbook of Generalized Convexity and Generalized Monotonicity
Author :
Publisher : Springer Science & Business Media
Total Pages : 684
Release :
ISBN-10 : 9780387233932
ISBN-13 : 0387233938
Rating : 4/5 (32 Downloads)

Synopsis Handbook of Generalized Convexity and Generalized Monotonicity by : Nicolas Hadjisavvas

Studies in generalized convexity and generalized monotonicity have significantly increased during the last two decades. Researchers with very diverse backgrounds such as mathematical programming, optimization theory, convex analysis, nonlinear analysis, nonsmooth analysis, linear algebra, probability theory, variational inequalities, game theory, economic theory, engineering, management science, equilibrium analysis, for example are attracted to this fast growing field of study. Such enormous research activity is partially due to the discovery of a rich, elegant and deep theory which provides a basis for interesting existing and potential applications in different disciplines. The handbook offers an advanced and broad overview of the current state of the field. It contains fourteen chapters written by the leading experts on the respective subject; eight on generalized convexity and the remaining six on generalized monotonicity.

Generalized Convexity, Generalized Monotonicity: Recent Results

Generalized Convexity, Generalized Monotonicity: Recent Results
Author :
Publisher : Springer Science & Business Media
Total Pages : 469
Release :
ISBN-10 : 9781461333418
ISBN-13 : 1461333415
Rating : 4/5 (18 Downloads)

Synopsis Generalized Convexity, Generalized Monotonicity: Recent Results by : Jean-Pierre Crouzeix

A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems.

Invexity and Optimization

Invexity and Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 269
Release :
ISBN-10 : 9783540785613
ISBN-13 : 3540785612
Rating : 4/5 (13 Downloads)

Synopsis Invexity and Optimization by : Shashi K. Mishra

Invexity and Optimization presents results on invex function and their properties in smooth and nonsmooth cases, pseudolinearity and eta-pseudolinearity. Results on optimality and duality for a nonlinear scalar programming problem are presented, second and higher order duality results are given for a nonlinear scalar programming problem, and saddle point results are also presented. Invexity in multiobjective programming problems and Kuhn-Tucker optimality conditions are given for a multiobjecive programming problem, Wolfe and Mond-Weir type dual models are given for a multiobjective programming problem and usual duality results are presented in presence of invex functions. Continuous-time multiobjective problems are also discussed. Quadratic and fractional programming problems are given for invex functions. Symmetric duality results are also given for scalar and vector cases.

Generalized Concavity

Generalized Concavity
Author :
Publisher : SIAM
Total Pages : 342
Release :
ISBN-10 : 9780898718966
ISBN-13 : 0898718961
Rating : 4/5 (66 Downloads)

Synopsis Generalized Concavity by : Mordecai Avriel

Originally published: New York: Plenum Press, 1988.

Convex Optimization

Convex Optimization
Author :
Publisher : Cambridge University Press
Total Pages : 744
Release :
ISBN-10 : 0521833787
ISBN-13 : 9780521833783
Rating : 4/5 (87 Downloads)

Synopsis Convex Optimization by : Stephen P. Boyd

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Basic Mathematical Programming Theory

Basic Mathematical Programming Theory
Author :
Publisher : Springer Nature
Total Pages : 443
Release :
ISBN-10 : 9783031303241
ISBN-13 : 3031303245
Rating : 4/5 (41 Downloads)

Synopsis Basic Mathematical Programming Theory by : Giorgio Giorgi

The subject of (static) optimization, also called mathematical programming, is one of the most important and widespread branches of modern mathematics, serving as a cornerstone of such scientific subjects as economic analysis, operations research, management sciences, engineering, chemistry, physics, statistics, computer science, biology, and social sciences. This book presents a unified, progressive treatment of the basic mathematical tools of mathematical programming theory. The authors expose said tools, along with results concerning the most common mathematical programming problems formulated in a finite-dimensional setting, forming the basis for further study of the basic questions on the various algorithmic methods and the most important particular applications of mathematical programming problems. This book assumes no previous experience in optimization theory, and the treatment of the various topics is largely self-contained. Prerequisites are the basic tools of differential calculus for functions of several variables, the basic notions of topology and of linear algebra, and the basic mathematical notions and theoretical background used in analyzing optimization problems. The book is aimed at both undergraduate and postgraduate students interested in mathematical programming problems but also those professionals who use optimization methods and wish to learn the more theoretical aspects of these questions.