Generalized Coherent States and Their Applications

Generalized Coherent States and Their Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 323
Release :
ISBN-10 : 9783642616297
ISBN-13 : 3642616291
Rating : 4/5 (97 Downloads)

Synopsis Generalized Coherent States and Their Applications by : Askold Perelomov

This monograph treats an extensively developed field in modern mathematical physics - the theory of generalized coherent states and their applications to various physical problems. Coherent states, introduced originally by Schrodinger and von Neumann, were later employed by Glauber for a quantal description of laser light beams. The concept was generalized by the author for an arbitrary Lie group. In the last decade the formalism has been widely applied to various domains of theoretical physics and mathematics. The area of applications of generalized coherent states is very wide, and a comprehensive exposition of the results in the field would be helpful. This monograph is the first attempt toward this aim. My purpose was to compile and expound systematically the vast amount of material dealing with the coherent states and available through numerous journal articles. The book is based on a number of undergraduate and postgraduate courses I delivered at the Moscow Physico-Technical Institute. In its present form it is intended for professional mathematicians and theoretical physicists; it may also be useful for university students of mathematics and physics. In Part I the formalism is elaborated and explained for some of the simplest typical groups. Part II contains more sophisticated material; arbitrary Lie groups and symmetrical spaces are considered. A number of examples from various areas of theoretical and mathematical physics illustrate advantages of this approach, in Part III. It is a pleasure for me to thank Dr. Yu. Danilov for many useful remarks.

Generalized Coherent States and Their Applications

Generalized Coherent States and Their Applications
Author :
Publisher : Springer
Total Pages : 320
Release :
ISBN-10 : 3642648916
ISBN-13 : 9783642648915
Rating : 4/5 (16 Downloads)

Synopsis Generalized Coherent States and Their Applications by : Askold Perelomov

This monograph treats an extensively developed field in modern mathematical physics - the theory of generalized coherent states and their applications to various physical problems. Coherent states, introduced originally by Schrodinger and von Neumann, were later employed by Glauber for a quantal description of laser light beams. The concept was generalized by the author for an arbitrary Lie group. In the last decade the formalism has been widely applied to various domains of theoretical physics and mathematics. The area of applications of generalized coherent states is very wide, and a comprehensive exposition of the results in the field would be helpful. This monograph is the first attempt toward this aim. My purpose was to compile and expound systematically the vast amount of material dealing with the coherent states and available through numerous journal articles. The book is based on a number of undergraduate and postgraduate courses I delivered at the Moscow Physico-Technical Institute. In its present form it is intended for professional mathematicians and theoretical physicists; it may also be useful for university students of mathematics and physics. In Part I the formalism is elaborated and explained for some of the simplest typical groups. Part II contains more sophisticated material; arbitrary Lie groups and symmetrical spaces are considered. A number of examples from various areas of theoretical and mathematical physics illustrate advantages of this approach, in Part III. It is a pleasure for me to thank Dr. Yu. Danilov for many useful remarks.

Coherent States

Coherent States
Author :
Publisher : World Scientific
Total Pages : 934
Release :
ISBN-10 : 9971966522
ISBN-13 : 9789971966522
Rating : 4/5 (22 Downloads)

Synopsis Coherent States by : John R. Klauder

This volume is a review on coherent states and some of their applications. The usefulness of the concept of coherent states is illustrated by considering specific examples from the fields of physics and mathematical physics. Particular emphasis is given to a general historical introduction, general continuous representations, generalized coherent states, classical and quantum correspondence, path integrals and canonical formalism. Applications are considered in quantum mechanics, optics, quantum chemistry, atomic physics, statistical physics, nuclear physics, particle physics and cosmology. A selection of original papers is reprinted.

Coherent States and Applications in Mathematical Physics

Coherent States and Applications in Mathematical Physics
Author :
Publisher : Springer Science & Business Media
Total Pages : 419
Release :
ISBN-10 : 9789400701953
ISBN-13 : 9400701950
Rating : 4/5 (53 Downloads)

Synopsis Coherent States and Applications in Mathematical Physics by : Monique Combescure

This book presents the various types of coherent states introduced and studied in the physics and mathematics literature and describes their properties together with application to quantum physics problems. It is intended to serve as a compendium on coherent states and their applications for physicists and mathematicians, stretching from the basic mathematical structures of generalized coherent states in the sense of Perelomov via the semiclassical evolution of coherent states to various specific examples of coherent states (hydrogen atom, quantum oscillator, ...).

Coherent States, Wavelets, and Their Generalizations

Coherent States, Wavelets, and Their Generalizations
Author :
Publisher : Springer Science & Business Media
Total Pages : 586
Release :
ISBN-10 : 9781461485353
ISBN-13 : 1461485355
Rating : 4/5 (53 Downloads)

Synopsis Coherent States, Wavelets, and Their Generalizations by : Syed Twareque Ali

This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states for the relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potential applications, from the quantum physically oriented, like the quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable.

Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics

Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 247
Release :
ISBN-10 : 9789401153324
ISBN-13 : 9401153329
Rating : 4/5 (24 Downloads)

Synopsis Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics by : W.-H. Steeb

This book gives a comprehensive introduction to modern quantum mechanics, emphasising the underlying Hilbert space theory and generalised function theory. All the major modern techniques and approaches used in quantum mechanics are introduced, such as Berry phase, coherent and squeezed states, quantum computing, solitons and quantum mechanics. Audience: The book is suitable for graduate students in physics and mathematics.

Coherent States and Their Applications

Coherent States and Their Applications
Author :
Publisher : Springer
Total Pages : 350
Release :
ISBN-10 : 9783319767321
ISBN-13 : 3319767321
Rating : 4/5 (21 Downloads)

Synopsis Coherent States and Their Applications by : Jean-Pierre Antoine

Coherent states (CS) were originally introduced in 1926 by Schrödinger and rediscovered in the early 1960s in the context of laser physics. Since then, they have evolved into an extremely rich domain that pervades virtually every corner of physics, and have also given rise to a range of research topics in mathematics. The purpose of the 2016 CIRM conference was to bring together leading experts in the field with scientists interested in related topics, to jointly investigate their applications in physics, their various mathematical properties, and their generalizations in many directions. Instead of traditional proceedings, this book presents sixteen longer review-type contributions, which are the outcome of a collaborative effort by many conference participants, subsequently reviewed by independent experts. The book aptly illustrates the diversity of CS aspects, from purely mathematical topics to physical applications, including quantum gravity.

Principles of Quantum Mechanics

Principles of Quantum Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 676
Release :
ISBN-10 : 9781475705768
ISBN-13 : 147570576X
Rating : 4/5 (68 Downloads)

Synopsis Principles of Quantum Mechanics by : R. Shankar

R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include: - Clear, accessible treatment of underlying mathematics - A review of Newtonian, Lagrangian, and Hamiltonian mechanics - Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates - Unsurpassed coverage of path integrals and their relevance in contemporary physics The requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book’s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.

Introductory Quantum Optics

Introductory Quantum Optics
Author :
Publisher : Cambridge University Press
Total Pages : 338
Release :
ISBN-10 : 052152735X
ISBN-13 : 9780521527354
Rating : 4/5 (5X Downloads)

Synopsis Introductory Quantum Optics by : Christopher Gerry

Publisher Description

Path Integrals and Coherent States of SU(2) and SU(1,1)

Path Integrals and Coherent States of SU(2) and SU(1,1)
Author :
Publisher : World Scientific
Total Pages : 338
Release :
ISBN-10 : 9810206569
ISBN-13 : 9789810206567
Rating : 4/5 (69 Downloads)

Synopsis Path Integrals and Coherent States of SU(2) and SU(1,1) by : Akira Inomata

The authors examine several topical subjects, commencing with a general introduction to path integrals in quantum mechanics and the group theoretical backgrounds for path integrals. Applications of harmonic analysis, polar coordinate formulation, various techniques and path integrals on SU(2) and SU(1, 1) are discussed. Soluble examples presented include particle-flux system, a pulsed oscillator, magnetic monopole, the Coulomb problem in curved space and others.The second part deals with the SU(2) coherent states and their applications. Construction and generalization of the SU(2) coherent states, formulation of coherent path integrals for spin and unitary spin, and semiclassical quantization are presented. Applications are made to the study of quantum fluctuation, the nonlinear field model and phase holonomy.The final chapters present the theory of the SU(1, 1) coherent states and their applications. The radial coulomb problem, the Morse oscillator, and the large-N approximation are discussed. Applications to problems in quantum optics such as squeezed states, interaction with the squeezed vacuum states, and phase operator formalism are also included.This book will be useful as an introduction to the subject as well as a valuable work of reference.