Gauge Theories in Particle Physics 40th Anniversary Edition

Gauge Theories in Particle Physics 40th Anniversary Edition
Author :
Publisher : CRC Press
Total Pages : 853
Release :
ISBN-10 : 9781040267899
ISBN-13 : 1040267890
Rating : 4/5 (99 Downloads)

Synopsis Gauge Theories in Particle Physics 40th Anniversary Edition by : Ian J.R. Aitchison

The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of the Higgs and top quark sectors, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. The first volume provides a broad and self-contained introduction to the first of these theories, QED. A unique feature is the elementary introduction to quantum field theory, leading in easy stages to covariant perturbation theory and Feynman graphs, thereby establishing a firm foundation for the formal and conceptual framework upon which the subsequent development of the three quantum gauge field theories of the Standard Model is based. The second volume covers the two non-Abelian gauge theories of QCD and the GSW theory. A distinctive feature is the extended treatment of two crucial theoretical tools: spontaneous symmetry breaking and the renormalization group. The underlying physics of these is elucidated by parallel discussions of examples from condensed matter systems: superfluidity and superconductivity, and critical phenomena. This new edition includes updates to jet algorithms, lattice field theory, CP violation and the CKM matrix, and neutrino physics. New to the fifth edition: Tests of the Standard Model in the Higgs and top quark sectors The naturalness problem and responses to it going beyond the Standard Model The Standard Model as an effective field theory This revised and updated anniversary edition provides a self-contained pedagogical treatment of the subject, from relativistic quantum mechanics to the frontiers of the Standard Model. For each theory, the authors discuss the main conceptual points in both mathematical and physical aspects, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight. This set should serve as a valuable handbook for students and researchers in advanced particle physics looking for an introduction to the Standard Model of particle physics.

Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 2

Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 2
Author :
Publisher : CRC Press
Total Pages : 1119
Release :
ISBN-10 : 9781040012871
ISBN-13 : 1040012876
Rating : 4/5 (71 Downloads)

Synopsis Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 2 by : Ian J R Aitchison

The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. Volume 2 of this updated edition covers the two non-Abelian gauge theories of QCD and the GSW theory. A distinctive feature is the extended treatment of two crucial theoretical tools: spontaneous symmetry breaking and the renormalization group. The underlying physics of these is elucidated by parallel discussions of examples from condensed matter systems: superfluidity and superconductivity, and critical phenomena. This new edition includes updates to jet algorithms, lattice field theory, CP violation and the CKM matrix, and neutrino physics. New to the fifth edition: · Tests of the Standard Model in the Higgs and top quark sectors · The naturalness problem and responses to it going beyond the Standard Model · The Standard Model as an effective field theory Each volume should serve as a valuable handbook for students and researchers in advanced particle physics looking for an accessible introduction to the Standard Model of particle physics. Ian J.R. Aitchison is Emeritus Professor of Physics at the University of Oxford. He has previously held research positions at Brookhaven National Laboratory, Saclay, and the University of Cambridge. He was a visiting professor at the University of Rochester and the University of Washington, and a scientific associate at CERN and SLAC. Dr. Aitchison has published over 90 scientific papers mainly on hadronic physics and quantum field theory. He is the author of two books and joint editor of further two. Anthony J.G. Hey is now Honorary Senior Data Scientist at the UK’s National Laboratory at Harwell. He began his career with a doctorate in particle physics from the University of Oxford. After a career in particle physics that included a professorship at the University of Southampton and research positions at Caltech, MIT and CERN, he moved to Computer Science and founded a parallel computing research group. The group were one of the pioneers of distributed memory message-passing computers and helped establish the ‘MPI’ message passing standard. After leaving Southampton in 2001 he was director of the UK’s ‘eScience’ initiative before becoming a Vice-President in Microsoft Research. He returned to the UK in 2015 as Chief Data Scientist at the U.K.’s Rutherford Appleton Laboratory. He then founded a new ‘Scientific Machine Learning’ group to apply AI technologies to the ‘Big Scientific Data’ generated by the Diamond Synchrotron, the ISIS neutron source, and the Central Laser Facility that are located on the Harwell campus. He is the author of over 100 scientific papers on physics and computing and editor of ‘The Feynman Lectures on Computation’.

Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 2

Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 2
Author :
Publisher : CRC Press
Total Pages : 470
Release :
ISBN-10 : 9781040012826
ISBN-13 : 1040012825
Rating : 4/5 (26 Downloads)

Synopsis Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 2 by : Ian J R Aitchison

The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. Volume 2 of this updated edition covers the two non-Abelian gauge theories of QCD and the GSW theory. A distinctive feature is the extended treatment of two crucial theoretical tools: spontaneous symmetry breaking and the renormalization group. The underlying physics of these is elucidated by parallel discussions of examples from condensed matter systems: superfluidity and superconductivity, and critical phenomena. This new edition includes updates to jet algorithms, lattice field theory, CP violation and the CKM matrix, and neutrino physics. New to the fifth edition: Tests of the Standard Model in the Higgs and top quark sectors The naturalness problem and responses to it going beyond the Standard Model The Standard Model as an effective field theory Each volume should serve as a valuable handbook for students and researchers in advanced particle physics looking for an accessible introduction to the Standard Model of particle physics.

Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 1

Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 1
Author :
Publisher : CRC Press
Total Pages : 382
Release :
ISBN-10 : 9781040012741
ISBN-13 : 1040012744
Rating : 4/5 (41 Downloads)

Synopsis Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 1 by : Ian J R Aitchison

The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. Volume 1 of this updated edition provides a broad introduction to the first of these theories, QED. The book begins with self-contained presentations of relativistic quantum mechanics and electromagnetism as a gauge theory. Lorentz transformations, discrete symmetries, and Majorana fermions are covered. A unique feature is the elementary introduction to quantum field theory, leading in easy stages to covariant perturbation theory and Feynman graphs, thereby establishing a firm foundation for the formal and conceptual framework upon which the subsequent development of the three quantum gauge field theories of the Standard Model is based. Detailed tree-level calculations of physical processes in QED are presented, followed by an elementary treatment of one-loop renormalization of a model scalar field theory, and then by the realistic case of QED. The text includes updates on nucleon structure functions and the status of QED, in particular the precision tests provided by the anomalous magnetic moments of the electron and muon. The authors discuss the main conceptual points of the theory, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight. Each volume should serve as a valuable handbook for students and researchers in advanced particle physics looking for an introduction to the Standard Model of particle physics.

Gauge Theories in Particle Physics, 40th Anniversary Edition : A Practical Introduction, Volume 1

Gauge Theories in Particle Physics, 40th Anniversary Edition : A Practical Introduction, Volume 1
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1032533617
ISBN-13 : 9781032533612
Rating : 4/5 (17 Downloads)

Synopsis Gauge Theories in Particle Physics, 40th Anniversary Edition : A Practical Introduction, Volume 1 by : Ian Johnston Rhind Aitchison

The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. Volume 2 of this updated edition covers the two non-Abelian gauge theories of QCD and the GSW theory. A distinctive feature is the extended treatment of two crucial theoretical tools: spontaneous symmetry breaking and the renormalization group. The underlying physics of these is elucidated by parallel discussions of examples from condensed matter systems: superfluidity and superconductivity, and critical phenomena. This new edition includes updates to jet algorithms, lattice field theory, CP violation and the CKM matrix, and neutrino physics. New to the fifth edition: · Tests of the Standard Model in the Higgs and top quark sectors · The naturalness problem and responses to it going beyond the Standard Model · The Standard Model as an effective field theory Each volume should serve as a valuable handbook for students and researchers in advanced particle physics looking for an accessible introduction to the Standard Model of particle physics. Ian J.R. Aitchison is Emeritus Professor of Physics at the University of Oxford. He has previously held research positions at Brookhaven National Laboratory, Saclay, and the University of Cambridge. He was a visiting professor at the University of Rochester and the University of Washington, and a scientific associate at CERN and SLAC. Dr. Aitchison has published over 90 scientific papers mainly on hadronic physics and quantum field theory. He is the author of two books and joint editor of further two. Anthony J.G. Hey is now Honorary Senior Data Scientist at the UK's National Laboratory at Harwell. He began his career with a doctorate in particle physics from the University of Oxford. After a career in particle physics that included a professorship at the University of Southampton and research positions at Caltech, MIT and CERN, he moved to Computer Science and founded a parallel computing research group. The group were one of the pioneers of distributed memory message-passing computers and helped establish the 'MPI' message passing standard. After leaving Southampton in 2001 he was director of the UK's 'eScience' initiative before becoming a Vice-President in Microsoft Research. He returned to the UK in 2015 as Chief Data Scientist at the U.K.'s Rutherford Appleton Laboratory. He then founded a new 'Scientific Machine Learning' group to apply AI technologies to the 'Big Scientific Data' generated by the Diamond Synchrotron, the ISIS neutron source, and the Central Laser Facility that are located on the Harwell campus. He is the author of over 100 scientific papers on physics and computing and editor of 'The Feynman Lectures on Computation'.

Gauge Theory of Elementary Particle Physics

Gauge Theory of Elementary Particle Physics
Author :
Publisher : Oxford University Press
Total Pages : 549
Release :
ISBN-10 : 9780192652249
ISBN-13 : 0192652249
Rating : 4/5 (49 Downloads)

Synopsis Gauge Theory of Elementary Particle Physics by : Ta-Pei Cheng

This is a practical introduction to the principal ideas in gauge theory and their applications to elementary particle physics. It explains technique and methodology with simple exposition backed up by many illustrative examples. Derivations, some of well known results, are presented in sufficient detail to make the text accessible to readers entering the field for the first time. The book focuses on the strong interaction theory of quantum chromodynamics and the electroweak interaction theory of Glashow, Weinberg, and Salam, as well as the grand unification theory, exemplified by the simplest SU(5) model. Not intended as an exhaustive survey, the book nevertheless provides the general background necessary for a serious student who wishes to specialize in the field of elementary particle theory. Physicists with an interest in general aspects of gauge theory will also find the book highly useful.

Shifting Standards

Shifting Standards
Author :
Publisher : University of Pittsburgh Press
Total Pages : 362
Release :
ISBN-10 : 9780822979197
ISBN-13 : 0822979195
Rating : 4/5 (97 Downloads)

Synopsis Shifting Standards by : Allan Franklin

In Shifting Standards, Allan Franklin provides an overview of notable experiments in particle physics. Using papers published in Physical Review, the journal of the American Physical Society, as his basis, Franklin details the experiments themselves, their data collection, the events witnessed, and the interpretation of results. From these papers, he distills the dramatic changes to particle physics experimentation from 1894 through 2009. Franklin develops a framework for his analysis, viewing each example according to exclusion and selection of data; possible experimenter bias; details of the experimental apparatus; size of the data set, apparatus, and number of authors; rates of data taking along with analysis and reduction; distinction between ideal and actual experiments; historical accounts of previous experiments; and personal comments and style. From Millikan's tabletop oil-drop experiment to the Compact Muon Solenoid apparatus measuring approximately 4,000 cubic meters (not including accelerators) and employing over 2,000 authors, Franklin's study follows the decade-by-decade evolution of scale and standards in particle physics experimentation. As he shows, where once there were only one or two collaborators, now it literally takes a village. Similar changes are seen in data collection: in 1909 Millikan's data set took 175 oil drops, of which he used 23 to determine the value of e, the charge of the electron; in contrast, the 1988-1992 E791 experiment using the Collider Detector at Fermilab, investigating the hadroproduction of charm quarks, recorded 20 billion events. As we also see, data collection took a quantum leap in the 1950s with the use of computers. Events are now recorded at rates as of a few hundred per second, and analysis rates have progressed similarly. Employing his epistemology of experimentation, Franklin deconstructs each example to view the arguments offered and the correctness of the results. Overall, he finds that despite the metamorphosis of the process, the role of experimentation has remained remarkably consistent through the years: to test theories and provide factual basis for scientific knowledge, to encourage new theories, and to reveal new phenomenon.

Gauge Theories in Particle Physics: A Practical Introduction, Fourth Edition - 2 Volume set

Gauge Theories in Particle Physics: A Practical Introduction, Fourth Edition - 2 Volume set
Author :
Publisher : CRC Press
Total Pages : 979
Release :
ISBN-10 : 9781466591127
ISBN-13 : 1466591129
Rating : 4/5 (27 Downloads)

Synopsis Gauge Theories in Particle Physics: A Practical Introduction, Fourth Edition - 2 Volume set by : Ian J.R. Aitchison

The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field theories of the Standard Model: QCD and the GSW electroweak theory. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles for neutrinos. Exploring a new era in particle physics, this edition discusses the exciting discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. This revised and updated edition provides a self-contained pedagogical treatment of the subject, from relativistic quantum mechanics to the frontiers of the Standard Model. For each theory, the authors discuss the main conceptual points, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.

Magnetohydrodynamics and the Earth's Core

Magnetohydrodynamics and the Earth's Core
Author :
Publisher : CRC Press
Total Pages : 464
Release :
ISBN-10 : 9780203209196
ISBN-13 : 0203209192
Rating : 4/5 (96 Downloads)

Synopsis Magnetohydrodynamics and the Earth's Core by : Andrew M. Soward

Paul Roberts' research contributions are remarkable in their diversity, depth and international appeal. Papers from the Paul Roberts' Anniversary meeting at the University of Exeter are presented in this volume. Topics include geomagnetism and dynamos, fluid mechanics and MHD, superfluidity, mixed phase regions, mean field electrodynamics and the E

Gauge Theories in Particle Physics, Third Edition - 2 volume set

Gauge Theories in Particle Physics, Third Edition - 2 volume set
Author :
Publisher : CRC Press
Total Pages : 474
Release :
ISBN-10 : 0750309822
ISBN-13 : 9780750309820
Rating : 4/5 (22 Downloads)

Synopsis Gauge Theories in Particle Physics, Third Edition - 2 volume set by : Ian J.R. Aitchison

This two-volume set provides an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this third edition, much has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. On the one hand, substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth-year courses. On the other hand, since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended to provide a uniquely accessible and self-contained introduction to quantum field dynamics as described by Feynman graphs. The level is suitable for advanced fourth-year undergraduates and first-year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED. The second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.