Gaseous Hydrogen Embrittlement of Materials in Energy Technologies

Gaseous Hydrogen Embrittlement of Materials in Energy Technologies
Author :
Publisher : Elsevier
Total Pages : 521
Release :
ISBN-10 : 9780857095374
ISBN-13 : 0857095374
Rating : 4/5 (74 Downloads)

Synopsis Gaseous Hydrogen Embrittlement of Materials in Energy Technologies by : Richard P Gangloff

Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.Volume 2 is divided into three parts, part one looks at the mechanisms of hydrogen interactions with metals including chapters on the adsorption and trap-sensitive diffusion of hydrogen and its impact on deformation and fracture processes. Part two investigates modern methods of modelling hydrogen damage so as to predict material-cracking properties. The book ends with suggested future directions in science and engineering to manage the hydrogen embrittlement of high-performance metals in energy systems.With its distinguished editors and international team of expert contributors, Volume 2 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation. - Summarises the wealth of recent research on understanding and dealing with the safety, durability, performance and economic operation of using gaseous hydrogen at high pressure - Chapters review mechanisms of hydrogen embrittlement including absorption, diffusion and trapping of hydrogen in metals - Analyses ways of modelling hydrogen-induced damage and assessing service life

Gaseous Hydrogen Embrittlement of Materials in Energy Technologies

Gaseous Hydrogen Embrittlement of Materials in Energy Technologies
Author :
Publisher : Elsevier
Total Pages : 864
Release :
ISBN-10 : 9780857093899
ISBN-13 : 0857093894
Rating : 4/5 (99 Downloads)

Synopsis Gaseous Hydrogen Embrittlement of Materials in Energy Technologies by : Richard P Gangloff

Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.Volume 1 is divided into three parts, the first of which provides an overview of the hydrogen embrittlement problem in specific technologies including petrochemical refining, automotive hydrogen tanks, nuclear waste disposal and power systems, and H2 storage and distribution facilities. Part two then examines modern methods of characterization and analysis of hydrogen damage and part three focuses on the hydrogen degradation of various alloy classesWith its distinguished editors and international team of expert contributors, Volume 1 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation. - Summarises the wealth of recent research on understanding and dealing with the safety, durability, performance and economic operation of using gaseous hydrogen at high pressure - Reviews how hydrogen embrittlement affects particular sectors such as the petrochemicals, automotive and nuclear industries - Discusses how hydrogen embrittlement can be characterised and its effects on particular alloy classes

Mechanics - Microstructure - Corrosion Coupling

Mechanics - Microstructure - Corrosion Coupling
Author :
Publisher : Elsevier
Total Pages : 574
Release :
ISBN-10 : 9780128192412
ISBN-13 : 0128192410
Rating : 4/5 (12 Downloads)

Synopsis Mechanics - Microstructure - Corrosion Coupling by : Christine Blanc

Mechanics - Microstructure - Corrosion Coupling: Concepts, Experiments, Modeling and Cases presents the state-of-the-art on scientific and technological developments relating to the durability of materials and structures subjected to mechanical and environmental stress in industries such as energy, aeronautics, chemistry and oil. Experimental, theoretical and numerical aspects are tackled at different scales, providing readers with the most advanced tools and scientific approaches to apprehend coupling phenomena by understanding associated mechanisms, identifying variables of the first order, and proposing strategies to control and/or extend the lifespan of structures in a multi-process coupling situation. In addition, the book presents the latest advances in research in these areas (hydrogen embrittlement, stress corrosion, fatigue, etc.), especially in the consideration of the multi-scale aspect of the phenomena in the implementation of dedicated experiments. - Reviews the status of scientific and technological developments related to the durability of materials - Addresses experimental, theoretical and numerical aspects at different scales - Provides the most advanced tools and scientific approaches - Focuses on the latest advances, such as hydrogen embrittlement, stress corrosion, fatigue, and more

Current Trends and Future Developments on (Bio-) Membranes

Current Trends and Future Developments on (Bio-) Membranes
Author :
Publisher : Elsevier
Total Pages : 414
Release :
ISBN-10 : 9780128183335
ISBN-13 : 0128183330
Rating : 4/5 (35 Downloads)

Synopsis Current Trends and Future Developments on (Bio-) Membranes by : Angelo Basile

Current Trends and Future Developments in (Bio-) Membranes: Recent Advances in Metallic Membranes presents recent developments in metallic membranes used in membrane reactors to save energy. It also offers a comprehensive review of the present state-of-the-art on the fabrication and design of metallic membranes and membrane reactors, considering various applications. This book focuses on the structure, preparation, characterization and applications of metallic membranes and membrane reactors, as well as transport mechanisms and simulation aspects. As recent research has focused on the development of metallic membranes and their applications, this book is an ideal reference on different production procedures and their use. - Reviews metallic membranes research and applications - Outlines the mechanisms of metallic membrane based processes - Includes structure, preparation, characterization and properties of metallic membranes - Highlights various applications of metallic membranes in energy production

Advances in Mechanical and Power Engineering

Advances in Mechanical and Power Engineering
Author :
Publisher : Springer Nature
Total Pages : 390
Release :
ISBN-10 : 9783031184871
ISBN-13 : 3031184874
Rating : 4/5 (71 Downloads)

Synopsis Advances in Mechanical and Power Engineering by : Holm Altenbach

This book covers theoretical and experimental findings at the interface between fluid mechanics, heat transfer and energy technologies. It reports on the development and improvement of numerical methods and intelligent technologies for a wide range of applications in mechanical, power and materials engineering. It reports on solutions to modern fluid mechanics and heat transfer problems, on strategies for studying and improving the dynamics and durability of power equipment, discussing important issues relating to energy saving and environmental safety. Gathering selected contributions to the XIV International Conference on Advanced Mechanical and Power Engineering (CAMPE 2021), held online on October 18-21, 2021, from Kharkiv, Ukraine, this book offers a timely update and extensive information for both researchers and professionals in the field of mechanical and power engineering.

Corrosion Protection and Control Using Nanomaterials

Corrosion Protection and Control Using Nanomaterials
Author :
Publisher : Elsevier
Total Pages : 421
Release :
ISBN-10 : 9780857095800
ISBN-13 : 0857095803
Rating : 4/5 (00 Downloads)

Synopsis Corrosion Protection and Control Using Nanomaterials by : V S Saji

Corrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control.The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition and the corrosion behaviour of electrodeposited nanocrystalline materials. Part two provides a series of case studies of applications of nanomaterials in corrosion control. Chapters review oxidation protection using nanocrystalline structures at various temperatures, sol- gel and self-healing nanocoatings and the use of nanoreservoirs and polymer nanocomposites in corrosion control.With its distinguished editors and international team of expert contributors, Corrosion protection and control using nanomaterials is an invaluable reference tool for researchers and engineers working with nanomaterials in a variety of industries including, aerospace, automotive and chemical engineering as well as academics studying the unique protection and control offered by nanomaterials against corrosion. - Explores the potential use of nanotechnology and nanomaterials for corrosion prevention, protection and control - Discusses the impact of nanotechnology in reducing corrosion cost and investigates various factors on the corrosion behaviour of nanocrystalline materials - Provides a series of case studies and applications of nanomaterials for corrosion control

Encyclopedia of Iron, Steel, and Their Alloys (Online Version)

Encyclopedia of Iron, Steel, and Their Alloys (Online Version)
Author :
Publisher : CRC Press
Total Pages : 3918
Release :
ISBN-10 : 9781466511057
ISBN-13 : 1466511052
Rating : 4/5 (57 Downloads)

Synopsis Encyclopedia of Iron, Steel, and Their Alloys (Online Version) by : George E. Totten

The first of many important works featured in CRC Press’ Metals and Alloys Encyclopedia Collection, the Encyclopedia of Iron, Steel, and Their Alloys covers all the fundamental, theoretical, and application-related aspects of the metallurgical science, engineering, and technology of iron, steel, and their alloys. This Five-Volume Set addresses topics such as extractive metallurgy, powder metallurgy and processing, physical metallurgy, production engineering, corrosion engineering, thermal processing, metalworking, welding, iron- and steelmaking, heat treating, rolling, casting, hot and cold forming, surface finishing and coating, crystallography, metallography, computational metallurgy, metal-matrix composites, intermetallics, nano- and micro-structured metals and alloys, nano- and micro-alloying effects, special steels, and mining. A valuable reference for materials scientists and engineers, chemists, manufacturers, miners, researchers, and students, this must-have encyclopedia: Provides extensive coverage of properties and recommended practices Includes a wealth of helpful charts, nomograms, and figures Contains cross referencing for quick and easy search Each entry is written by a subject-matter expert and reviewed by an international panel of renowned researchers from academia, government, and industry. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]

Hydrogen Energy Engineering

Hydrogen Energy Engineering
Author :
Publisher : Springer
Total Pages : 578
Release :
ISBN-10 : 9784431560425
ISBN-13 : 4431560424
Rating : 4/5 (25 Downloads)

Synopsis Hydrogen Energy Engineering by : Kazunari Sasaki

This book focuses on the fundamental principles and latest research findings in hydrogen energy fields including: hydrogen production, hydrogen storage, fuel cells, hydrogen safety, economics, and the impact on society. Further, the book introduces the latest development trends in practical applications, especially in commercial household fuel cells and commercial fuel cell vehicles in Japan. This book not only helps readers to further their basic knowledge, but also presents the state of the art of hydrogen-energy-related research and development. This work serves as an excellent reference for beginners such as graduate students, as well as a handbook and systematic summary of entire hydrogen-energy systems for scientists and engineers.

Strain Gradient Plasticity-Based Modeling of Damage and Fracture

Strain Gradient Plasticity-Based Modeling of Damage and Fracture
Author :
Publisher : Springer
Total Pages : 166
Release :
ISBN-10 : 9783319633848
ISBN-13 : 3319633848
Rating : 4/5 (48 Downloads)

Synopsis Strain Gradient Plasticity-Based Modeling of Damage and Fracture by : Emilio Martínez Pañeda

This book provides a comprehensive introduction to numerical modeling of size effects in metal plasticity. The main classes of strain gradient plasticity formulations are described and efficiently implemented in the context of the finite element method. A robust numerical framework is presented and employed to investigate the role of strain gradients on structural integrity assessment. The results obtained reveal the need of incorporating the influence on geometrically necessary dislocations in the modeling of various damage mechanisms. Large gradients of plastic strain increase dislocation density, promoting strain hardening and elevating crack tip stresses. This stress elevation is quantified under both infinitesimal and finite deformation theories, rationalizing the experimental observation of cleavage fracture in the presence of significant plastic flow. Gradient-enhanced modeling of crack growth resistance, hydrogen diffusion and environmentally assisted cracking highlighted the relevance of an appropriate characterization of the mechanical response at the small scales involved in crack tip deformation. Particularly promising predictions are attained in the field of hydrogen embrittlement. The research has been conducted at the Universities of Cambridge, Oviedo, Luxembourg, and the Technical University of Denmark, in a collaborative effort to understand, model and optimize the mechanical response of engineering materials.