Fuzzy Stochastic Multiobjective Programming

Fuzzy Stochastic Multiobjective Programming
Author :
Publisher : Springer Science & Business Media
Total Pages : 268
Release :
ISBN-10 : 9781441984029
ISBN-13 : 144198402X
Rating : 4/5 (29 Downloads)

Synopsis Fuzzy Stochastic Multiobjective Programming by : Masatoshi Sakawa

Although studies on multiobjective mathematical programming under uncertainty have been accumulated and several books on multiobjective mathematical programming under uncertainty have been published (e.g., Stancu-Minasian (1984); Slowinski and Teghem (1990); Sakawa (1993); Lai and Hwang (1994); Sakawa (2000)), there seems to be no book which concerns both randomness of events related to environments and fuzziness of human judgments simultaneously in multiobjective decision making problems. In this book, the authors are concerned with introducing the latest advances in the field of multiobjective optimization under both fuzziness and randomness on the basis of the authors’ continuing research works. Special stress is placed on interactive decision making aspects of fuzzy stochastic multiobjective programming for human-centered systems under uncertainty in most realistic situations when dealing with both fuzziness and randomness. Organization of each chapter is briefly summarized as follows: Chapter 2 is devoted to mathematical preliminaries, which will be used throughout the remainder of the book. Starting with basic notions and methods of multiobjective programming, interactive fuzzy multiobjective programming as well as fuzzy multiobjective programming is outlined. In Chapter 3, by considering the imprecision of decision maker’s (DM’s) judgment for stochastic objective functions and/or constraints in multiobjective problems, fuzzy multiobjective stochastic programming is developed. In Chapter 4, through the consideration of not only the randomness of parameters involved in objective functions and/or constraints but also the experts’ ambiguous understanding of the realized values of the random parameters, multiobjective programming problems with fuzzy random variables are formulated. In Chapter 5, for resolving conflict of decision making problems in hierarchical managerial or public organizations where there exist two DMs who have different priorities in making decisions, two-level programming problems are discussed. Finally, Chapter 6 outlines some future research directions.

Fuzzy Stochastic Multiobjective Programming

Fuzzy Stochastic Multiobjective Programming
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 1461428068
ISBN-13 : 9781461428060
Rating : 4/5 (68 Downloads)

Synopsis Fuzzy Stochastic Multiobjective Programming by : Masatoshi Sakawa

Although studies on multiobjective mathematical programming under uncertainty have been accumulated and several books on multiobjective mathematical programming under uncertainty have been published (e.g., Stancu-Minasian (1984); Slowinski and Teghem (1990); Sakawa (1993); Lai and Hwang (1994); Sakawa (2000)), there seems to be no book which concerns both randomness of events related to environments and fuzziness of human judgments simultaneously in multiobjective decision making problems. In this book, the authors are concerned with introducing the latest advances in the field of multiobjective optimization under both fuzziness and randomness on the basis of the authors’ continuing research works. Special stress is placed on interactive decision making aspects of fuzzy stochastic multiobjective programming for human-centered systems under uncertainty in most realistic situations when dealing with both fuzziness and randomness. Organization of each chapter is briefly summarized as follows: Chapter 2 is devoted to mathematical preliminaries, which will be used throughout the remainder of the book. Starting with basic notions and methods of multiobjective programming, interactive fuzzy multiobjective programming as well as fuzzy multiobjective programming is outlined. In Chapter 3, by considering the imprecision of decision maker’s (DM’s) judgment for stochastic objective functions and/or constraints in multiobjective problems, fuzzy multiobjective stochastic programming is developed. In Chapter 4, through the consideration of not only the randomness of parameters involved in objective functions and/or constraints but also the experts’ ambiguous understanding of the realized values of the random parameters, multiobjective programming problems with fuzzy random variables are formulated. In Chapter 5, for resolving conflict of decision making problems in hierarchical managerial or public organizations where there exist two DMs who have different priorities in making decisions, two-level programming problems are discussed. Finally, Chapter 6 outlines some future research directions.

Linear and Multiobjective Programming with Fuzzy Stochastic Extensions

Linear and Multiobjective Programming with Fuzzy Stochastic Extensions
Author :
Publisher : Springer Science & Business Media
Total Pages : 347
Release :
ISBN-10 : 9781461493990
ISBN-13 : 1461493994
Rating : 4/5 (90 Downloads)

Synopsis Linear and Multiobjective Programming with Fuzzy Stochastic Extensions by : Masatoshi Sakawa

Although several books or monographs on multiobjective optimization under uncertainty have been published, there seems to be no book which starts with an introductory chapter of linear programming and is designed to incorporate both fuzziness and randomness into multiobjective programming in a unified way. In this book, five major topics, linear programming, multiobjective programming, fuzzy programming, stochastic programming, and fuzzy stochastic programming, are presented in a comprehensive manner. Especially, the last four topics together comprise the main characteristics of this book, and special stress is placed on interactive decision making aspects of multiobjective programming for human-centered systems in most realistic situations under fuzziness and/or randomness. Organization of each chapter is briefly summarized as follows: Chapter 2 is a concise and condensed description of the theory of linear programming and its algorithms. Chapter 3 discusses fundamental notions and methods of multiobjective linear programming and concludes with interactive multiobjective linear programming. In Chapter 4, starting with clear explanations of fuzzy linear programming and fuzzy multiobjective linear programming, interactive fuzzy multiobjective linear programming is presented. Chapter 5 gives detailed explanations of fundamental notions and methods of stochastic programming including two-stage programming and chance constrained programming. Chapter 6 develops several interactive fuzzy programming approaches to multiobjective stochastic programming problems. Applications to purchase and transportation planning for food retailing are considered in Chapter 7. The book is self-contained because of the three appendices and answers to problems. Appendix A contains a brief summary of the topics from linear algebra. Pertinent results from nonlinear programming are summarized in Appendix B. Appendix C is a clear explanation of the Excel Solver, one of the easiest ways to solve optimization problems, through the use of simple examples of linear and nonlinear programming.

Multi-Objective Stochastic Programming in Fuzzy Environments

Multi-Objective Stochastic Programming in Fuzzy Environments
Author :
Publisher : IGI Global
Total Pages : 434
Release :
ISBN-10 : 9781522583028
ISBN-13 : 1522583025
Rating : 4/5 (28 Downloads)

Synopsis Multi-Objective Stochastic Programming in Fuzzy Environments by : Biswas, Animesh

It is frequently observed that most decision-making problems involve several objectives, and the aim of the decision makers is to find the best decision by fulfilling the aspiration levels of all the objectives. Multi-objective decision making is especially suitable for the design and planning steps and allows a decision maker to achieve the optimal or aspired goals by considering the various interactions of the given constraints. Multi-Objective Stochastic Programming in Fuzzy Environments discusses optimization problems with fuzzy random variables following several types of probability distributions and different types of fuzzy numbers with different defuzzification processes in probabilistic situations. The content within this publication examines such topics as waste management, agricultural systems, and fuzzy set theory. It is designed for academicians, researchers, and students.

Fuzzy Sets and Interactive Multiobjective Optimization

Fuzzy Sets and Interactive Multiobjective Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 319
Release :
ISBN-10 : 9781489916334
ISBN-13 : 1489916334
Rating : 4/5 (34 Downloads)

Synopsis Fuzzy Sets and Interactive Multiobjective Optimization by : Masatoshi Sakawa

The main characteristics of the real-world decision-making problems facing humans today are multidimensional and have multiple objectives including eco nomic, environmental, social, and technical ones. Hence, it seems natural that the consideration of many objectives in the actual decision-making process re quires multiobjective approaches rather than single-objective. One ofthe major systems-analytic multiobjective approaches to decision-making under constraints is multiobjective optimization as a generalization of traditional single-objective optimization. Although multiobjective optimization problems differ from single objective optimization problems only in the plurality of objective functions, it is significant to realize that multiple objectives are often noncom mensurable and conflict with each other in multiobjective optimization problems. With this ob servation, in multiobjective optimization, the notion of Pareto optimality or effi ciency has been introduced instead of the optimality concept for single-objective optimization. However, decisions with Pareto optimality or efficiency are not uniquely determined; the final decision must be selected from among the set of Pareto optimal or efficient solutions. Therefore, the question is, how does one find the preferred point as a compromise or satisficing solution with rational pro cedure? This is the starting point of multiobjective optimization. To be more specific, the aim is to determine how one derives a compromise or satisficing so lution of a decision maker (DM), which well represents the subjective judgments, from a Pareto optimal or an efficient solution set.

Interactive Multiobjective Decision Making Under Uncertainty

Interactive Multiobjective Decision Making Under Uncertainty
Author :
Publisher : CRC Press
Total Pages : 296
Release :
ISBN-10 : 9781498763554
ISBN-13 : 1498763553
Rating : 4/5 (54 Downloads)

Synopsis Interactive Multiobjective Decision Making Under Uncertainty by : Hitoshi Yano

Recently, many books on multiobjective programming have been published. However, only a few books have been published, in which multiobjective programming under the randomness and the fuzziness are investigated. On the other hand, several books on multilevel programming have been published, in which multiple decision makers are involved in hierarchical decision situations. In this book, we introduce the latest advances in the field of multiobjective programming and multilevel programming under uncertainty. The reader can immediately use proposed methods to solve multiobjective programming and multilevel programming, which are based on linear programming or convex programming technique. Organization of each capter is summarized as follows. In Chapter 2, multiobjective programming problems with random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 3, multiobjective programming problems with fuzzy random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which not only the uncertainty of fuzzy random variables but also the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 4, multiobjective multilevel programming is discussed, and the interactive algorithms are developed to obtain a satisfactory solution, in which the hierarchical decision structure of multiple decision makers is reflected. In Chapter 5, two kinds of farm planning problems are solved by applying the proposed method, in which cost coefficients of crops are expressed by random variables.

Fuzzy Multi-Criteria Decision Making

Fuzzy Multi-Criteria Decision Making
Author :
Publisher : Springer Science & Business Media
Total Pages : 591
Release :
ISBN-10 : 9780387768137
ISBN-13 : 0387768130
Rating : 4/5 (37 Downloads)

Synopsis Fuzzy Multi-Criteria Decision Making by : Cengiz Kahraman

This work examines all the fuzzy multicriteria methods recently developed, such as fuzzy AHP, fuzzy TOPSIS, interactive fuzzy multiobjective stochastic linear programming, fuzzy multiobjective dynamic programming, grey fuzzy multiobjective optimization, fuzzy multiobjective geometric programming, and more. Each of the 22 chapters includes practical applications along with new developments/results. This book may be used as a textbook in graduate operations research, industrial engineering, and economics courses. It will also be an excellent resource, providing new suggestions and directions for further research, for computer programmers, mathematicians, and scientists in a variety of disciplines where multicriteria decision making is needed.

Stochastic Programming

Stochastic Programming
Author :
Publisher : Springer
Total Pages : 360
Release :
ISBN-10 : UCAL:B4127999
ISBN-13 :
Rating : 4/5 (99 Downloads)

Synopsis Stochastic Programming by : I.M. Stancu-Minasian

Recent Advances in Intelligent Information Systems and Applied Mathematics

Recent Advances in Intelligent Information Systems and Applied Mathematics
Author :
Publisher : Springer Nature
Total Pages : 923
Release :
ISBN-10 : 9783030341527
ISBN-13 : 3030341526
Rating : 4/5 (27 Downloads)

Synopsis Recent Advances in Intelligent Information Systems and Applied Mathematics by : Oscar Castillo

This book describes the latest advances in intelligent techniques such as fuzzy logic, neural networks, and optimization algorithms, and their relevance in building intelligent information systems in combination with applied mathematics. The authors also outline the applications of these systems in areas like intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and optimization of complex problems. By sharing fresh ideas and identifying new targets/problems it offers young researchers and students new directions for their future research. The book is intended for readers from mathematics and computer science, in particular professors and students working on theory and applications of intelligent systems for real-world applications.

Fuzzy Linear Programming: Solution Techniques and Applications

Fuzzy Linear Programming: Solution Techniques and Applications
Author :
Publisher : Springer
Total Pages : 246
Release :
ISBN-10 : 9783030174217
ISBN-13 : 3030174212
Rating : 4/5 (17 Downloads)

Synopsis Fuzzy Linear Programming: Solution Techniques and Applications by : Seyed Hadi Nasseri

This book presents the necessary and essential backgrounds of fuzzy set theory and linear programming, particularly a broad range of common Fuzzy Linear Programming (FLP) models and related, convenient solution techniques. These models and methods belong to three common classes of fuzzy linear programming, namely: (i) FLP problems in which all coefficients are fuzzy numbers, (ii) FLP problems in which the right-hand-side vectors and the decision variables are fuzzy numbers, and (iii) FLP problems in which the cost coefficients, the right-hand-side vectors and the decision variables are fuzzy numbers. The book essentially generalizes the well-known solution algorithms used in linear programming to the fuzzy environment. Accordingly, it can be used not only as a textbook, teaching material or reference book for undergraduate and graduate students in courses on applied mathematics, computer science, management science, industrial engineering, artificial intelligence, fuzzy information processes, and operations research, but can also serve as a reference book for researchers in these fields, especially those engaged in optimization and soft computing. For textbook purposes, it also includes simple and illustrative examples to help readers who are new to the field.