Fundamentals Of Mathematical Proof
Download Fundamentals Of Mathematical Proof full books in PDF, epub, and Kindle. Read online free Fundamentals Of Mathematical Proof ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Charles Matthews |
Publisher |
: Createspace Independent Publishing Platform |
Total Pages |
: 166 |
Release |
: 2018-05-05 |
ISBN-10 |
: 1717176704 |
ISBN-13 |
: 9781717176707 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Fundamentals of Mathematical Proof by : Charles Matthews
This mathematics textbook covers the fundamental ideas used in writing proofs. Proof techniques covered include direct proofs, proofs by contrapositive, proofs by contradiction, proofs in set theory, proofs of existentially or universally quantified predicates, proofs by cases, and mathematical induction. Inductive and deductive reasoning are explored. A straightforward approach is taken throughout. Plenty of examples are included and lots of exercises are provided after each brief exposition on the topics at hand. The text begins with a study of symbolic logic, deductive reasoning, and quantifiers. Inductive reasoning and making conjectures are examined next, and once there are some statements to prove, techniques for proving conditional statements, disjunctions, biconditional statements, and quantified predicates are investigated. Terminology and proof techniques in set theory follow with discussions of the pick-a-point method and the algebra of sets. Cartesian products, equivalence relations, orders, and functions are all incorporated. Particular attention is given to injectivity, surjectivity, and cardinality. The text includes an introduction to topology and abstract algebra, with a comparison of topological properties to algebraic properties. This book can be used by itself for an introduction to proofs course or as a supplemental text for students in proof-based mathematics classes. The contents have been rigorously reviewed and tested by instructors and students in classroom settings.
Author |
: Ethan D. Bloch |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 378 |
Release |
: 2011-02-15 |
ISBN-10 |
: 9781441971272 |
ISBN-13 |
: 1441971270 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Proofs and Fundamentals by : Ethan D. Bloch
“Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.
Author |
: Bernd S. W. Schröder |
Publisher |
: Wiley |
Total Pages |
: 0 |
Release |
: 2010-08-16 |
ISBN-10 |
: 0470551380 |
ISBN-13 |
: 9780470551387 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Fundamentals of Mathematics by : Bernd S. W. Schröder
An accessible introduction to abstract mathematics with an emphasis on proof writing Addressing the importance of constructing and understanding mathematical proofs, Fundamentals of Mathematics: An Introduction to Proofs, Logic, Sets, and Numbers introduces key concepts from logic and set theory as well as the fundamental definitions of algebra to prepare readers for further study in the field of mathematics. The author supplies a seamless, hands-on presentation of number systems, utilizing key elements of logic and set theory and encouraging readers to abide by the fundamental rule that you are not allowed to use any results that you have not proved yet. The book begins with a focus on the elements of logic used in everyday mathematical language, exposing readers to standard proof methods and Russell's Paradox. Once this foundation is established, subsequent chapters explore more rigorous mathematical exposition that outlines the requisite elements of Zermelo-Fraenkel set theory and constructs the natural numbers and integers as well as rational, real, and complex numbers in a rigorous, yet accessible manner. Abstraction is introduced as a tool, and special focus is dedicated to concrete, accessible applications, such as public key encryption, that are made possible by abstract ideas. The book concludes with a self-contained proof of Abel's Theorem and an investigation of deeper set theory by introducing the Axiom of Choice, ordinal numbers, and cardinal numbers. Throughout each chapter, proofs are written in much detail with explicit indications that emphasize the main ideas and techniques of proof writing. Exercises at varied levels of mathematical development allow readers to test their understanding of the material, and a related Web site features video presentations for each topic, which can be used along with the book or independently for self-study. Classroom-tested to ensure a fluid and accessible presentation, Fundamentals of Mathematics is an excellent book for mathematics courses on proofs, logic, and set theory at the upper-undergraduate level as well as a supplement for transition courses that prepare students for the rigorous mathematical reasoning of advanced calculus, real analysis, and modern algebra. The book is also a suitable reference for professionals in all areas of mathematics education who are interested in mathematical proofs and the foundation upon which all mathematics is built.
Author |
: Martin Aigner |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 194 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9783662223437 |
ISBN-13 |
: 3662223430 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Proofs from THE BOOK by : Martin Aigner
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Author |
: Richard H. Hammack |
Publisher |
: |
Total Pages |
: 314 |
Release |
: 2016-01-01 |
ISBN-10 |
: 0989472116 |
ISBN-13 |
: 9780989472111 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Book of Proof by : Richard H. Hammack
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.
Author |
: Daniel J. Velleman |
Publisher |
: Cambridge University Press |
Total Pages |
: 401 |
Release |
: 2006-01-16 |
ISBN-10 |
: 9780521861243 |
ISBN-13 |
: 0521861241 |
Rating |
: 4/5 (43 Downloads) |
Synopsis How to Prove It by : Daniel J. Velleman
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Author |
: Peter G. Hinman |
Publisher |
: CRC Press |
Total Pages |
: 895 |
Release |
: 2018-10-08 |
ISBN-10 |
: 9781439864272 |
ISBN-13 |
: 1439864276 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Fundamentals of Mathematical Logic by : Peter G. Hinman
This introductory graduate text covers modern mathematical logic from propositional, first-order and infinitary logic and Gödel's Incompleteness Theorems to extensive introductions to set theory, model theory and recursion (computability) theory. Based on the author's more than 35 years of teaching experience, the book develops students' intuition by presenting complex ideas in the simplest context for which they make sense. The book is appropriate for use as a classroom text, for self-study, and as a reference on the state of modern logic.
Author |
: Neil R. Nicholson |
Publisher |
: CRC Press |
Total Pages |
: 465 |
Release |
: 2019-03-21 |
ISBN-10 |
: 9780429522000 |
ISBN-13 |
: 0429522002 |
Rating |
: 4/5 (00 Downloads) |
Synopsis A Transition to Proof by : Neil R. Nicholson
A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the "nuts and bolts'" of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively. The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict "mathematical do’s and don’ts", which are presented in eye-catching "text-boxes" throughout the text. The end result enables readers to fully understand the fundamentals of proof. Features: The text is aimed at transition courses preparing students to take analysis Promotes creativity, intuition, and accuracy in exposition The language of proof is established in the first two chapters, which cover logic and set theory Includes chapters on cardinality and introductory topology
Author |
: Robert Clark Penner |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 487 |
Release |
: 1999-10-19 |
ISBN-10 |
: 9789813105614 |
ISBN-13 |
: 9813105615 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Discrete Mathematics - Proof Techniques And Mathematical Structures by : Robert Clark Penner
This book offers an introduction to mathematical proofs and to the fundamentals of modern mathematics. No real prerequisites are needed other than a suitable level of mathematical maturity. The text is divided into two parts, the first of which constitutes the core of a one-semester course covering proofs, predicate calculus, set theory, elementary number theory, relations, and functions, and the second of which applies this material to a more advanced study of selected topics in pure mathematics, applied mathematics, and computer science, specifically cardinality, combinatorics, finite-state automata, and graphs. In both parts, deeper and more interesting material is treated in optional sections, and the text has been kept flexible by allowing many different possible courses or emphases based upon different paths through the volume.
Author |
: David Stewart |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 175 |
Release |
: 2015-06-10 |
ISBN-10 |
: 9789814641326 |
ISBN-13 |
: 9814641324 |
Rating |
: 4/5 (26 Downloads) |
Synopsis Building Proofs: A Practical Guide by : David Stewart
This book introduces students to the art and craft of writing proofs, beginning with the basics of writing proofs and logic, and continuing on with more in-depth issues and examples of creating proofs in different parts of mathematics, as well as introducing proofs-of-correctness for algorithms. The creation of proofs is covered for theorems in both discrete and continuous mathematics, and in difficulty ranging from elementary to beginning graduate level.Just beyond the standard introductory courses on calculus, theorems and proofs become central to mathematics. Students often find this emphasis difficult and new. This book is a guide to understanding and creating proofs. It explains the standard “moves” in mathematical proofs: direct computation, expanding definitions, proof by contradiction, proof by induction, as well as choosing notation and strategies.