Fundamentals Of Machine Learning Algorithms And Its Models
Download Fundamentals Of Machine Learning Algorithms And Its Models full books in PDF, epub, and Kindle. Read online free Fundamentals Of Machine Learning Algorithms And Its Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: John D. Kelleher |
Publisher |
: MIT Press |
Total Pages |
: 853 |
Release |
: 2020-10-20 |
ISBN-10 |
: 9780262361101 |
ISBN-13 |
: 0262361108 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Fundamentals of Machine Learning for Predictive Data Analytics, second edition by : John D. Kelleher
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Author |
: Mehryar Mohri |
Publisher |
: MIT Press |
Total Pages |
: 505 |
Release |
: 2018-12-25 |
ISBN-10 |
: 9780262351362 |
ISBN-13 |
: 0262351366 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Foundations of Machine Learning, second edition by : Mehryar Mohri
A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.
Author |
: Dr.R.Gowri |
Publisher |
: SK Research Group of Companies |
Total Pages |
: 202 |
Release |
: 2024-03-29 |
ISBN-10 |
: 9788119980833 |
ISBN-13 |
: 8119980832 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Fundamentals of Machine Learning: Algorithms and its Models by : Dr.R.Gowri
Dr.R.Gowri, Associate Professor, Department of Mathematics, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, India. Mrs.R.A.Latha Devi, Assistant Professor, Department of Mathematics, Sri Meenakshi Government Arts College for Women, Madurai, Tamil Nadu, India Dr.T.Dheepak, Assistant Professor, Department of Computer Science, Centre for Distance and Online Education, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. Dr.P.Kavitha, Assistant Professor, Department of Computer Applications, Dhanalakshmi Srinivasan College of Arts and Science for Women Autonomous, Perambalur, Tamil Nadu, India. Dr.T.Suresh, Assistant Professor, Department of Artificial Intelligence & Machine Learning, K.Ramakrishnan College of Engineering, Tiruchirappalli, Tamil Nadu, India.
Author |
: Nikhil Buduma |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 272 |
Release |
: 2017-05-25 |
ISBN-10 |
: 9781491925560 |
ISBN-13 |
: 1491925566 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Fundamentals of Deep Learning by : Nikhil Buduma
With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning
Author |
: V Kishore Ayyadevara |
Publisher |
: Apress |
Total Pages |
: 379 |
Release |
: 2018-06-30 |
ISBN-10 |
: 9781484235645 |
ISBN-13 |
: 1484235649 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Pro Machine Learning Algorithms by : V Kishore Ayyadevara
Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R. You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. What You Will Learn Get an in-depth understanding of all the major machine learning and deep learning algorithms Fully appreciate the pitfalls to avoid while building models Implement machine learning algorithms in the cloud Follow a hands-on approach through case studies for each algorithm Gain the tricks of ensemble learning to build more accurate models Discover the basics of programming in R/Python and the Keras framework for deep learning Who This Book Is For Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.
Author |
: Jason Brownlee |
Publisher |
: Machine Learning Mastery |
Total Pages |
: 162 |
Release |
: 2016-03-04 |
ISBN-10 |
: |
ISBN-13 |
: |
Rating |
: 4/5 ( Downloads) |
Synopsis Master Machine Learning Algorithms by : Jason Brownlee
You must understand the algorithms to get good (and be recognized as being good) at machine learning. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work, then implement them from scratch, step-by-step.
Author |
: Jason Brownlee |
Publisher |
: Machine Learning Mastery |
Total Pages |
: 237 |
Release |
: 2016-11-16 |
ISBN-10 |
: |
ISBN-13 |
: |
Rating |
: 4/5 ( Downloads) |
Synopsis Machine Learning Algorithms From Scratch with Python by : Jason Brownlee
You must understand algorithms to get good at machine learning. The problem is that they are only ever explained using Math. No longer. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work. Using clear explanations, simple pure Python code (no libraries!) and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement a suite of linear, nonlinear and ensemble machine learning algorithms from scratch.
Author |
: Brad Boehmke |
Publisher |
: CRC Press |
Total Pages |
: 373 |
Release |
: 2019-11-07 |
ISBN-10 |
: 9781000730432 |
ISBN-13 |
: 1000730433 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Hands-On Machine Learning with R by : Brad Boehmke
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Author |
: Hariom Tatsat |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 426 |
Release |
: 2020-10-01 |
ISBN-10 |
: 9781492073000 |
ISBN-13 |
: 1492073008 |
Rating |
: 4/5 (00 Downloads) |
Synopsis Machine Learning and Data Science Blueprints for Finance by : Hariom Tatsat
Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations
Author |
: John Winn |
Publisher |
: CRC Press |
Total Pages |
: 469 |
Release |
: 2023-11-30 |
ISBN-10 |
: 9781498756822 |
ISBN-13 |
: 1498756824 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Model-Based Machine Learning by : John Winn
Today, machine learning is being applied to a growing variety of problems in a bewildering variety of domains. A fundamental challenge when using machine learning is connecting the abstract mathematics of a machine learning technique to a concrete, real world problem. This book tackles this challenge through model-based machine learning which focuses on understanding the assumptions encoded in a machine learning system and their corresponding impact on the behaviour of the system. The key ideas of model-based machine learning are introduced through a series of case studies involving real-world applications. Case studies play a central role because it is only in the context of applications that it makes sense to discuss modelling assumptions. Each chapter introduces one case study and works through step-by-step to solve it using a model-based approach. The aim is not just to explain machine learning methods, but also showcase how to create, debug, and evolve them to solve a problem. Features: Explores the assumptions being made by machine learning systems and the effect these assumptions have when the system is applied to concrete problems. Explains machine learning concepts as they arise in real-world case studies. Shows how to diagnose, understand and address problems with machine learning systems. Full source code available, allowing models and results to be reproduced and explored. Includes optional deep-dive sections with more mathematical details on inference algorithms for the interested reader.