Functional And High Dimensional Statistics And Related Fields
Download Functional And High Dimensional Statistics And Related Fields full books in PDF, epub, and Kindle. Read online free Functional And High Dimensional Statistics And Related Fields ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Germán Aneiros |
Publisher |
: Springer Nature |
Total Pages |
: 254 |
Release |
: 2020-06-19 |
ISBN-10 |
: 9783030477561 |
ISBN-13 |
: 3030477568 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Functional and High-Dimensional Statistics and Related Fields by : Germán Aneiros
This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.
Author |
: Martin J. Wainwright |
Publisher |
: Cambridge University Press |
Total Pages |
: 571 |
Release |
: 2019-02-21 |
ISBN-10 |
: 9781108498029 |
ISBN-13 |
: 1108498027 |
Rating |
: 4/5 (29 Downloads) |
Synopsis High-Dimensional Statistics by : Martin J. Wainwright
A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.
Author |
: Peter Bühlmann |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 568 |
Release |
: 2011-06-08 |
ISBN-10 |
: 9783642201929 |
ISBN-13 |
: 364220192X |
Rating |
: 4/5 (29 Downloads) |
Synopsis Statistics for High-Dimensional Data by : Peter Bühlmann
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
Author |
: Christophe Giraud |
Publisher |
: CRC Press |
Total Pages |
: 364 |
Release |
: 2021-08-25 |
ISBN-10 |
: 9781000408324 |
ISBN-13 |
: 1000408329 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Introduction to High-Dimensional Statistics by : Christophe Giraud
Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.
Author |
: Roman Vershynin |
Publisher |
: Cambridge University Press |
Total Pages |
: 299 |
Release |
: 2018-09-27 |
ISBN-10 |
: 9781108415194 |
ISBN-13 |
: 1108415199 |
Rating |
: 4/5 (94 Downloads) |
Synopsis High-Dimensional Probability by : Roman Vershynin
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Author |
: Sophie Dabo-Niang |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 296 |
Release |
: 2008-05-21 |
ISBN-10 |
: 9783790820621 |
ISBN-13 |
: 3790820628 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Functional and Operatorial Statistics by : Sophie Dabo-Niang
An increasing number of statistical problems and methods involve infinite-dimensional aspects. This is due to the progress of technologies which allow us to store more and more information while modern instruments are able to collect data much more effectively due to their increasingly sophisticated design. This evolution directly concerns statisticians, who have to propose new methodologies while taking into account such high-dimensional data (e.g. continuous processes, functional data, etc.). The numerous applications (micro-arrays, paleo- ecological data, radar waveforms, spectrometric curves, speech recognition, continuous time series, 3-D images, etc.) in various fields (biology, econometrics, environmetrics, the food industry, medical sciences, paper industry, etc.) make researching this statistical topic very worthwhile. This book gathers important contributions on the functional and operatorial statistics fields.
Author |
: Johannes Lederer |
Publisher |
: Springer Nature |
Total Pages |
: 355 |
Release |
: 2021-11-16 |
ISBN-10 |
: 9783030737924 |
ISBN-13 |
: 3030737926 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Fundamentals of High-Dimensional Statistics by : Johannes Lederer
This textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field. It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience.
Author |
: Inge Koch |
Publisher |
: Cambridge University Press |
Total Pages |
: 531 |
Release |
: 2014 |
ISBN-10 |
: 9780521887939 |
ISBN-13 |
: 0521887933 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Analysis of Multivariate and High-Dimensional Data by : Inge Koch
This modern approach integrates classical and contemporary methods, fusing theory and practice and bridging the gap to statistical learning.
Author |
: Jianqing Fan |
Publisher |
: CRC Press |
Total Pages |
: 942 |
Release |
: 2020-09-21 |
ISBN-10 |
: 9780429527616 |
ISBN-13 |
: 0429527616 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Statistical Foundations of Data Science by : Jianqing Fan
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Author |
: James Ramsay |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 317 |
Release |
: 2013-11-11 |
ISBN-10 |
: 9781475771077 |
ISBN-13 |
: 147577107X |
Rating |
: 4/5 (77 Downloads) |
Synopsis Functional Data Analysis by : James Ramsay
Included here are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drawn from growth analysis, meteorology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, applied data analysts, and to experienced researchers; and as such is of value both within statistics and across a broad spectrum of other fields. Much of the material appears here for the first time.