Functional Analysis Tools For Practical Use In Sciences And Engineering
Download Functional Analysis Tools For Practical Use In Sciences And Engineering full books in PDF, epub, and Kindle. Read online free Functional Analysis Tools For Practical Use In Sciences And Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Carlos A. de Moura |
Publisher |
: Springer Nature |
Total Pages |
: 223 |
Release |
: 2022-10-13 |
ISBN-10 |
: 9783031105982 |
ISBN-13 |
: 3031105982 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Functional Analysis Tools for Practical Use in Sciences and Engineering by : Carlos A. de Moura
This textbook describes selected topics in functional analysis as powerful tools of immediate use in many fields within applied mathematics, physics and engineering. It follows a very reader-friendly structure, with the presentation and the level of exposition especially tailored to those who need functional analysis but don’t have a strong background in this branch of mathematics. For every tool, this work emphasizes the motivation, the justification for the choices made, and the right way to employ the techniques. Proofs appear only when necessary for the safe use of the results. The book gently starts with a road map to guide reading. A subsequent chapter recalls definitions and notation for abstract spaces and some function spaces, while Chapter 3 enters dual spaces. Tools from Chapters 2 and 3 find use in Chapter 4, which introduces distributions. The Linear Functional Analysis basic triplet makes up Chapter 5, followed by Chapter 6, which introduces the concept of compactness. Chapter 7 brings a generalization of the concept of derivative for functions defined in normed spaces, while Chapter 8 discusses basic results about Hilbert spaces that are paramount to numerical approximations. The last chapter brings remarks to recent bibliographical items. Elementary examples included throughout the chapters foster understanding and self-study. By making key, complex topics more accessible, this book serves as a valuable resource for researchers, students, and practitioners alike that need to rely on solid functional analysis but don’t need to delve deep into the underlying theory.
Author |
: Svetlin G. Georgiev |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 404 |
Release |
: 2019-06-17 |
ISBN-10 |
: 9783110657722 |
ISBN-13 |
: 3110657724 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Functional Analysis with Applications by : Svetlin G. Georgiev
This book on functional analysis covers all the basics of the subject (normed, Banach and Hilbert spaces, Lebesgue integration and spaces, linear operators and functionals, compact and self-adjoint operators, small parameters, fixed point theory) with a strong focus on examples, exercises and practical problems, thus making it ideal as course material but also as a reference for self-study.
Author |
: Erwin Kreyszig |
Publisher |
: John Wiley & Sons |
Total Pages |
: 706 |
Release |
: 1991-01-16 |
ISBN-10 |
: 9780471504597 |
ISBN-13 |
: 0471504599 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Introductory Functional Analysis with Applications by : Erwin Kreyszig
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Author |
: Francis Clarke |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 589 |
Release |
: 2013-02-06 |
ISBN-10 |
: 9781447148203 |
ISBN-13 |
: 1447148207 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Functional Analysis, Calculus of Variations and Optimal Control by : Francis Clarke
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
Author |
: Haim Brezis |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 600 |
Release |
: 2010-11-02 |
ISBN-10 |
: 9780387709147 |
ISBN-13 |
: 0387709142 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Author |
: Antonio Ambrosetti |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 203 |
Release |
: 2011-07-19 |
ISBN-10 |
: 9780817681142 |
ISBN-13 |
: 0817681140 |
Rating |
: 4/5 (42 Downloads) |
Synopsis An Introduction to Nonlinear Functional Analysis and Elliptic Problems by : Antonio Ambrosetti
This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
Author |
: Michael Oberguggenberger |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 338 |
Release |
: 2011-03-19 |
ISBN-10 |
: 9780857294463 |
ISBN-13 |
: 0857294466 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Analysis for Computer Scientists by : Michael Oberguggenberger
This textbook presents an algorithmic approach to mathematical analysis, with a focus on modelling and on the applications of analysis. Fully integrating mathematical software into the text as an important component of analysis, the book makes thorough use of examples and explanations using MATLAB, Maple, and Java applets. Mathematical theory is described alongside the basic concepts and methods of numerical analysis, supported by computer experiments and programming exercises, and an extensive use of figure illustrations. Features: thoroughly describes the essential concepts of analysis; provides summaries and exercises in each chapter, as well as computer experiments; discusses important applications and advanced topics; presents tools from vector and matrix algebra in the appendices, together with further information on continuity; includes definitions, propositions and examples throughout the text; supplementary software can be downloaded from the book’s webpage.
Author |
: Karl Johan Åström |
Publisher |
: Princeton University Press |
Total Pages |
: |
Release |
: 2021-02-02 |
ISBN-10 |
: 9780691213477 |
ISBN-13 |
: 069121347X |
Rating |
: 4/5 (77 Downloads) |
Synopsis Feedback Systems by : Karl Johan Åström
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Author |
: H. Fujita |
Publisher |
: IOS Press |
Total Pages |
: 640 |
Release |
: 2009-08-31 |
ISBN-10 |
: 9781607504603 |
ISBN-13 |
: 160750460X |
Rating |
: 4/5 (03 Downloads) |
Synopsis New Trends in Software Methodologies, Tools and Techniques by : H. Fujita
Software is an essential enabler for science and the new economy, but software often falls short of our expectations, remaining expensive and not yet sufficiently reliable for a constantly changing and evolving market. This publication, which forms part of the SoMeT series, consists of 41 papers, carefully reviewed and revised on the basis of technical soundness, relevance, originality, significance, and clarity. These explore new trends and theories which illuminate the direction of developments which may lead to a transformation of the role of software in tomorrow’s global information society. The book offers an opportunity for the software science community to think about where they are today and where they are going. The emphasis has been placed on human-centric software methodologies, end-user development techniques, and emotional reasoning, for an optimally harmonised performance between the design tool and the user. The handling of cognitive issues in software development and the tools and techniques related to this form part of the contribution to this book. Other comparable theories and practices in software science, including emerging technologies essential for a comprehensive overview of information systems and research projects, are also addressed. This work represents another milestone in mastering the new challenges of software and its promising technology, and provides the reader with new insights, inspiration and concrete material to further the study of this new technology.
Author |
: Selcuk S. Bayin |
Publisher |
: John Wiley & Sons |
Total Pages |
: 1105 |
Release |
: 2019-12-04 |
ISBN-10 |
: 9781119580287 |
ISBN-13 |
: 1119580285 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Essentials of Mathematical Methods in Science and Engineering by : Selcuk S. Bayin
A comprehensive introduction to the multidisciplinary applications of mathematical methods, revised and updated The second edition of Essentials of Mathematical Methods in Science and Engineering offers an introduction to the key mathematical concepts of advanced calculus, differential equations, complex analysis, and introductory mathematical physics for students in engineering and physics research. The book’s approachable style is designed in a modular format with each chapter covering a subject thoroughly and thus can be read independently. This updated second edition includes two new and extensive chapters that cover practical linear algebra and applications of linear algebra as well as a computer file that includes Matlab codes. To enhance understanding of the material presented, the text contains a collection of exercises at the end of each chapter. The author offers a coherent treatment of the topics with a style that makes the essential mathematical skills easily accessible to a multidisciplinary audience. This important text: • Includes derivations with sufficient detail so that the reader can follow them without searching for results in other parts of the book • Puts the emphasis on the analytic techniques • Contains two new chapters that explore linear algebra and its applications • Includes Matlab codes that the readers can use to practice with the methods introduced in the book Written for students in science and engineering, this new edition of Essentials of Mathematical Methods in Science and Engineering maintains all the successful features of the first edition and includes new information.