Fully Nonlinear Elliptic Equations
Download Fully Nonlinear Elliptic Equations full books in PDF, epub, and Kindle. Read online free Fully Nonlinear Elliptic Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Luis A. Caffarelli |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 114 |
Release |
: 1995 |
ISBN-10 |
: 9780821804377 |
ISBN-13 |
: 0821804375 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Fully Nonlinear Elliptic Equations by : Luis A. Caffarelli
The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.
Author |
: Qing Han |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 378 |
Release |
: 2016-04-15 |
ISBN-10 |
: 9781470426071 |
ISBN-13 |
: 1470426072 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Nonlinear Elliptic Equations of the Second Order by : Qing Han
Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler–Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge–Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and “elementary” proofs for results in important special cases. This book will serve as a valuable resource for graduate students or anyone interested in this subject.
Author |
: N.V. Krylov |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2001-11-30 |
ISBN-10 |
: 140200334X |
ISBN-13 |
: 9781402003349 |
Rating |
: 4/5 (4X Downloads) |
Synopsis Nonlinear Elliptic and Parabolic Equations of the Second Order by : N.V. Krylov
Approach your problems from the It isn't that they can't see the right end and begin with the solution. It is that they can't see answers. Then one day, perhaps the problem. you will find the final question. G.K. Chesterton. The Scandal of 'The Hermit Clad in Crane Father Brown 'The Point of a Pin'. Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theor.etical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.
Author |
: D. Gilbarg |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 409 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9783642963797 |
ISBN-13 |
: 364296379X |
Rating |
: 4/5 (97 Downloads) |
Synopsis Elliptic Partial Differential Equations of Second Order by : D. Gilbarg
This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.
Author |
: Hervé Le Dret |
Publisher |
: Springer |
Total Pages |
: 259 |
Release |
: 2018-05-25 |
ISBN-10 |
: 9783319783901 |
ISBN-13 |
: 3319783904 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Nonlinear Elliptic Partial Differential Equations by : Hervé Le Dret
This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.
Author |
: Wenxiong Chen |
Publisher |
: |
Total Pages |
: 0 |
Release |
: 2010 |
ISBN-10 |
: 1601330065 |
ISBN-13 |
: 9781601330062 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Methods on Nonlinear Elliptic Equations by : Wenxiong Chen
Author |
: Ya-Zhe Chen |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 266 |
Release |
: 1998 |
ISBN-10 |
: 9780821819241 |
ISBN-13 |
: 0821819240 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Second Order Elliptic Equations and Elliptic Systems by : Ya-Zhe Chen
There are two parts to the book. In the first part, a complete introduction of various kinds of a priori estimate methods for the Dirichlet problem of second order elliptic partial differential equations is presented. In the second part, the existence and regularity theories of the Dirichlet problem for linear and nonlinear second order elliptic partial differential systems are introduced. The book features appropriate materials and is an excellent textbook for graduate students. The volume is also useful as a reference source for undergraduate mathematics majors, graduate students, professors, and scientists.
Author |
: Nikos Katzourakis |
Publisher |
: Springer |
Total Pages |
: 125 |
Release |
: 2014-11-26 |
ISBN-10 |
: 9783319128290 |
ISBN-13 |
: 3319128299 |
Rating |
: 4/5 (90 Downloads) |
Synopsis An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L∞ by : Nikos Katzourakis
The purpose of this book is to give a quick and elementary, yet rigorous, presentation of the rudiments of the so-called theory of Viscosity Solutions which applies to fully nonlinear 1st and 2nd order Partial Differential Equations (PDE). For such equations, particularly for 2nd order ones, solutions generally are non-smooth and standard approaches in order to define a "weak solution" do not apply: classical, strong almost everywhere, weak, measure-valued and distributional solutions either do not exist or may not even be defined. The main reason for the latter failure is that, the standard idea of using "integration-by-parts" in order to pass derivatives to smooth test functions by duality, is not available for non-divergence structure PDE.
Author |
: Roland Glowinski |
Publisher |
: SIAM |
Total Pages |
: 473 |
Release |
: 2015-11-04 |
ISBN-10 |
: 9781611973785 |
ISBN-13 |
: 1611973783 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem by : Roland Glowinski
Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.
Author |
: Luigi Ambrosio |
Publisher |
: Springer |
Total Pages |
: 234 |
Release |
: 2019-01-10 |
ISBN-10 |
: 9788876426513 |
ISBN-13 |
: 8876426515 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Lectures on Elliptic Partial Differential Equations by : Luigi Ambrosio
The book originates from the Elliptic PDE course given by the first author at the Scuola Normale Superiore in recent years. It covers the most classical aspects of the theory of Elliptic Partial Differential Equations and Calculus of Variations, including also more recent developments on partial regularity for systems and the theory of viscosity solutions.