From Schrödinger's Equation to Deep Learning: A Quantum Approach

From Schrödinger's Equation to Deep Learning: A Quantum Approach
Author :
Publisher : N.B. Singh
Total Pages : 306
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis From Schrödinger's Equation to Deep Learning: A Quantum Approach by : N.B. Singh

"From Schrödinger's Equation to Deep Learning: A Quantum Approach" offers a captivating exploration that bridges the realms of quantum mechanics and deep learning. Tailored for scientists, researchers, and enthusiasts in both quantum physics and artificial intelligence, this book delves into the symbiotic relationship between quantum principles and cutting-edge deep learning techniques. Covering topics such as quantum-inspired algorithms, neural networks, and computational advancements, the book provides a comprehensive overview of how quantum approaches enrich and influence the field of deep learning. With clarity and depth, it serves as an enlightening resource for those intrigued by the dynamic synergy between quantum mechanics and the transformative potential of deep learning.

Fundamentals: Schrödinger's Equation to Deep Learning

Fundamentals: Schrödinger's Equation to Deep Learning
Author :
Publisher : N.B. Singh
Total Pages : 225
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis Fundamentals: Schrödinger's Equation to Deep Learning by : N.B. Singh

"Focusing on the journey from understanding Schrödinger's Equation to exploring the depths of Deep Learning, this book serves as a comprehensive guide for absolute beginners with no mathematical backgrounds. Starting with fundamental concepts in quantum mechanics, the book gradually introduces readers to the intricacies of Schrödinger's Equation and its applications in various fields. With clear explanations and accessible language, readers will delve into the principles of quantum mechanics and learn how they intersect with modern technologies such as Deep Learning. By bridging the gap between theoretical physics and practical applications, this book equips readers with the knowledge and skills to navigate the fascinating world of quantum mechanics and embark on the exciting journey of Deep Learning."

Machine Learning Meets Quantum Physics

Machine Learning Meets Quantum Physics
Author :
Publisher : Springer Nature
Total Pages : 473
Release :
ISBN-10 : 9783030402457
ISBN-13 : 3030402452
Rating : 4/5 (57 Downloads)

Synopsis Machine Learning Meets Quantum Physics by : Kristof T. Schütt

Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.

Quantum Chemistry in the Age of Machine Learning

Quantum Chemistry in the Age of Machine Learning
Author :
Publisher : Elsevier
Total Pages : 702
Release :
ISBN-10 : 9780323886048
ISBN-13 : 0323886043
Rating : 4/5 (48 Downloads)

Synopsis Quantum Chemistry in the Age of Machine Learning by : Pavlo O. Dral

Quantum chemistry is simulating atomistic systems according to the laws of quantum mechanics, and such simulations are essential for our understanding of the world and for technological progress. Machine learning revolutionizes quantum chemistry by increasing simulation speed and accuracy and obtaining new insights. However, for nonspecialists, learning about this vast field is a formidable challenge. Quantum Chemistry in the Age of Machine Learning covers this exciting field in detail, ranging from basic concepts to comprehensive methodological details to providing detailed codes and hands-on tutorials. Such an approach helps readers get a quick overview of existing techniques and provides an opportunity to learn the intricacies and inner workings of state-of-the-art methods. The book describes the underlying concepts of machine learning and quantum chemistry, machine learning potentials and learning of other quantum chemical properties, machine learning-improved quantum chemical methods, analysis of Big Data from simulations, and materials design with machine learning. Drawing on the expertise of a team of specialist contributors, this book serves as a valuable guide for both aspiring beginners and specialists in this exciting field. - Compiles advances of machine learning in quantum chemistry across different areas into a single resource - Provides insights into the underlying concepts of machine learning techniques that are relevant to quantum chemistry - Describes, in detail, the current state-of-the-art machine learning-based methods in quantum chemistry

Solving the Schrodinger Equation

Solving the Schrodinger Equation
Author :
Publisher : World Scientific
Total Pages : 375
Release :
ISBN-10 : 9781848167254
ISBN-13 : 1848167253
Rating : 4/5 (54 Downloads)

Synopsis Solving the Schrodinger Equation by : Paul L. A. Popelier

The Schrodinger equation is the master equation of quantum chemistry. The founders of quantum mechanics realised how this equation underpins essentially the whole of chemistry. However, they recognised that its exact application was much too complicated to be solvable at the time. More than two generations of researchers were left to work out how to achieve this ambitious goal for molecular systems of ever-increasing size. This book focuses on non-mainstream methods to solve the molecular electronic Schrodinger equation. Each method is based on a set of core ideas and this volume aims to explain these ideas clearly so that they become more accessible. By bringing together these non-standard methods, the book intends to inspire graduate students, postdoctoral researchers and academics to think of novel approaches. Is there a method out there that we have not thought of yet? Can we design a new method that combines the best of all worlds?

Machine Learning with Quantum Computers

Machine Learning with Quantum Computers
Author :
Publisher : Springer Nature
Total Pages : 321
Release :
ISBN-10 : 9783030830984
ISBN-13 : 3030830985
Rating : 4/5 (84 Downloads)

Synopsis Machine Learning with Quantum Computers by : Maria Schuld

This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.

Deep Learning and Physics

Deep Learning and Physics
Author :
Publisher : Springer Nature
Total Pages : 207
Release :
ISBN-10 : 9789813361089
ISBN-13 : 9813361085
Rating : 4/5 (89 Downloads)

Synopsis Deep Learning and Physics by : Akinori Tanaka

What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.

Quantum Foundations

Quantum Foundations
Author :
Publisher : MDPI
Total Pages : 188
Release :
ISBN-10 : 9783038977544
ISBN-13 : 3038977543
Rating : 4/5 (44 Downloads)

Synopsis Quantum Foundations by : Pedro W. Lamberti

Since its conception 90 years ago, the quantum uncertainty principle introduced by Werner Heisenberg lies behind most important features of quantum physics, and its implications have an impact that goes far beyond the physics community. This book focuses on the quantum uncertainty principle, providing an up-to-date examination of recent developments of its applications in quantum information theory. The book brings together several renowned experts working in the foundations of quantum mechanics and quantum information theory. The authors provide different approaches to the study of uncertainty relations and other fundamental aspects of the quantum formalism. Topics addressed include entanglement and Bell inequalities, the application of entropic information measures to the study of uncertainty inequalities, the characterization of deep learning networks in the context of adiabatic quantum computation, and the study of general properties of the set of quantum states. The content of this book will surely benefit both experienced and new researchers specializing in quantum information theory and the foundations of quantum mechanics.

Aeronautics and Astronautics

Aeronautics and Astronautics
Author :
Publisher : Materials Research Forum LLC
Total Pages : 805
Release :
ISBN-10 : 9781644902813
ISBN-13 : 1644902818
Rating : 4/5 (13 Downloads)

Synopsis Aeronautics and Astronautics by : Sergio De Rosa

These conference proceedings present 165 papers in all scientific and aerospace engineering fields, including materials and structures, aerodynamics and fluid dynamics, propulsion, aerospace systems, flight mechanics and control, space systems, and missions. Keywords: Aerospace Shell Structures, MCAST's Aerospace Program, Sandwich Structures, Thermal Buckling, Simulation of Elastodynamic Problems. Statically Deflected Beam, Meshes with Arbitrary Polygons, Variable Stiffness Composite Panels, Mechanical Response of Composites, 3D Printing Technique, Hygrothermal Effects in Composite Materials, Freeze-Thaw Cycling, Polymer Matrices, Morphing Aileron, Thermo-Elastic Homogenization of Polycrystals, Flutter Instability in Elastic Structures, Adaptive Composite Wings, Cylindrical IGA Patches, TRAC Longerons, Structural Damage Detection, Fatigue Behavior of Stiffened Composite Components, Redesign of Composite Fuselage Barrel Components, Damage Modelling of Metallic Lattice Materials, Ceramic Matrix Composites, Peridynamics Elastoplastic Model, Structural Batteries Challenges. Dynamic Buckling Structural Test, Delamination Identification on Composites Panels. CubeSat Radiative Surface, Wind Tunnel Testing.

Numerical Analysis meets Machine Learning

Numerical Analysis meets Machine Learning
Author :
Publisher : Elsevier
Total Pages : 590
Release :
ISBN-10 : 9780443239854
ISBN-13 : 0443239851
Rating : 4/5 (54 Downloads)

Synopsis Numerical Analysis meets Machine Learning by :

Numerical Analysis Meets Machine Learning series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Handbook of Numerical Analysis series Updated release includes the latest information on the Numerical Analysis Meets Machine Learning