Seismic Fragility Assessment of Highway Bridges

Seismic Fragility Assessment of Highway Bridges
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:948510278
ISBN-13 :
Rating : 4/5 (78 Downloads)

Synopsis Seismic Fragility Assessment of Highway Bridges by : Seyyed Nima Mahmoudi

"Fragility curves are useful tools for reliability evaluation of structures as well as for identifying the most vulnerable components. This study focuses on the seismic fragility analysis of highway bridges. Two main approaches are used for this purpose: component-based and system-based fragility analyses. The seismic vulnerability of two existing bridges located in Montreal are assessed as case studies.The main goal of this study is to develop reliable seismic fragility curves for highway bridge structures considering all significant uncertainties involved. Uncertainties include those associated with modelling structural behavior, seismic inputs and definition of component capacities. The procedures are implemented for the fragility assessment of two existing bridges as case studies. For this purpose, deterioration due to corrosion of reinforcing steel and its effects on structural behavior are included, as well as validation of the Finite Element Model using dynamic properties obtained from ambient noise measurements. Proposed methods for the selection of appropriate set of ground motion records, the type of model analysis and probabilistic modeling of component capacities are presented and illustrated for the two case studies.Two stochastic methods are proposed for validating the Finite Element Model of a bridge. The first method is based on classical hypothesis testing procedures while the second uses a Bayesian updating approach. The stochastic methods are also used to update the input parameters, detect probable major damage in the bridges and determine the confidence interval on model responses as a function of laboratory test data and field observations.In order to limit the uncertainties involved in seismic inputs, a state-of-the-art ground motion record selection procedure based on Conditional Mean Spectrum (CMS) is used. Incremental Dynamic Analysis (IDA) is performed to evaluate the record to record variability in seismic responses and to capture the nonlinearity in structural component behaviors.The first part of the thesis describes the application of component-based fragility analysis for the seismic vulnerability assessment of highway bridge structures. IDA is performed on the validated Finite Element model of the structure using an appropriate set of ground motion records. The results are used for estimating the relationships between ground motion intensity measures and component demands. A Joint Probabilistic Seismic Demand Model (JPSDM) is fitted to the results in order to develop component and system fragility curves of the structure.Since the component based fragility analysis of complex structures comprising a large number of components requires enormous computational efforts, in the second part of this study, a system-based approach for developing seismic system fragility curves is proposed which uses Support Vector Machines (SVM). SVM is a state-of-the-art machine learning technique which is used to discover patterns in highly dimensional and complex data sets. In this application, SVM is used to determine the relationship between ground motion intensity measures and peak structural responses. Seismic fragility curves are developed using Probabilistic SVM (PSVM). Finally, the efficiency of the proposed PSVM method for its application to vector-valued ground motion Intensity Measures (IM) as well as traditional single-valued IM are investigated." --

Seismic Response and Analytical Fragility Functions for Curved Concrete Box-girder Bridges

Seismic Response and Analytical Fragility Functions for Curved Concrete Box-girder Bridges
Author :
Publisher :
Total Pages : 642
Release :
ISBN-10 : OCLC:948629241
ISBN-13 :
Rating : 4/5 (41 Downloads)

Synopsis Seismic Response and Analytical Fragility Functions for Curved Concrete Box-girder Bridges by : Reihaneh Sarraf Shirazi

Curved bridges are constructed to conform to geometric constraints resulting from traffic and structural restrictions. They are different from their straight counterparts since the response coupling in the longitudinal and transverse directions and rotation of the superstructure may lead to significantly different seismic response. Observations from past earthquakes highlighted the seismic vulnerability of these bridges due to this coupled response. The consequence of bridge damage on the performance of transportation system is commonly assessed through Seismic Risk Assessment (SRA) of lifeline systems. Thus, seismic fragility curves are essential input to SRA to estimate damage to highway bridges and consequently to the network. The literature review shows shortcomings in fragility studies on the effect of horizontal curvature of bridges, specifically concrete box-girder bridges. This study aims to fill in the gap on the current state-of-the-knowledge in the seismic response and vulnerability of curved concrete box-girder bridges. Since this bridge type is common in California, the modern details adopted by CALTRANS along with the current seismic design considerations from SDC (2013) are used to select the representative benchmark bridges. To incorporate the uncertainty in geometrical, structural, and material properties of bridges into the analytical models, five sets of statistical bridge samples (each includes 160 bridges) with various subtended angles are developed. These bridge models are subjected to four sets of ground motions representing different site soil conditions and spectral characteristics. A total of 800 response history analyses are performed and the results are used to develop analytical component and system fragility functions for a range of subtended angles. A comprehensive study on the effect of horizontal curvature on the bridge dynamic characteristics and component seismic response is conducted. The median of system (bridge) fragility curves are proposed as a function of the subtended angle for each ground motion set. These functions can be used as input into SRA tools. The fragility analysis shows that the seismic vulnerability of bridges depends on the soil condition of the site and ground motion characteristics as well as the horizontal curvature of the bridge. Columns are found to have the most significant contribution to the system fragility curves. The analyses confirm that the current seismic details including PTFE/spherical bearings and isolated shear keys, suggested by CALTRANS, achieve the objectives of capacity-protected design of piles. Since the dynamic characteristics of bridges are sensitive to the curvature, curved bridges with subtended angles greater than 30 degrees require explicit modeling of curved geometry. In curved bridges, the coupling of transverse and longitudinal modes reduces the dominance of the fundamental mode in the bridge response and leads to the contribution of higher modes. The statistical evaluation of structural demands indicates that the curvature and the torsion demands on columns are amplified in curved bridges.

Seismic Vulnerability Assessment of Retrofitted Bridges Using Probabilistic Methods

Seismic Vulnerability Assessment of Retrofitted Bridges Using Probabilistic Methods
Author :
Publisher :
Total Pages : 270
Release :
ISBN-10 : 0549008799
ISBN-13 : 9780549008798
Rating : 4/5 (99 Downloads)

Synopsis Seismic Vulnerability Assessment of Retrofitted Bridges Using Probabilistic Methods by : Jamie Ellen Padgett

There is an urgent need for the development of fragility curves for retrofitted bridges, particularly for the CSUS. These fragility curves are conditional probability statements of potential levels of damage over a range of earthquake intensities. The development of reliable retrofitted bridge fragility curves would allow for assessment of the effects of various retrofit measures on the performance of different CSUS bridge types. Therefore, a primary objective of this work is to develop a methodology for fragility assessment of bridge retrofit, in order to support seismic risk mitigation efforts in the region.

Effect of Directionality of Multi-component Ground Motions on Bridge Fragility Curves

Effect of Directionality of Multi-component Ground Motions on Bridge Fragility Curves
Author :
Publisher :
Total Pages : 123
Release :
ISBN-10 : 1124522077
ISBN-13 : 9781124522074
Rating : 4/5 (77 Downloads)

Synopsis Effect of Directionality of Multi-component Ground Motions on Bridge Fragility Curves by : Marco Torbol

This dissertation focuses on developing, evaluating and testing a new approach to seismic risk assessment of highway transportation networks. Throughout the years many researches have been conducted on each different step used in this dissertation. Most of these steps use a probabilistic approach for each single problem; Monte Carlo simulation is the brute force approach used by this dissertation, however some assumptions throughout the process were necessary to achieve results that could be useful to the final user, decision maker. When dealing with the damageability of an infrastructure network, it is necessary to start from the study of the damageability of each vulnerable component. For highway transportation networks subject to a seismic event bridges are the vulnerable component. With enough time, enough information and enough manpower the best approach is step by step: to build an analytical model for each bridge, to perform probabilistic seismic hazard analysis PSHA at each bridge site and to assess the seismic vulnerability of each bridge. Unfortunately, when dealing with large networks, bridges are present in hundreds or even thousands (LA-OC network has more than 3000 bridges; therefore subdivision in classes and prototyping of each class is necessary to reduce the problem to a more manageable dimension. a single prototype that represents its entire class is analyzed and its damageability is applied to the entire class. Fragility curves will be used to represents the bridges' damageability. Different contributions are developed in this dissertation; the fundamental one is the development of fragility curves with two uni-variate random variables. The first will be the Intensity Measure of the ground motion; the second will be the angle of seismic incidence from which the ground motion struck the structure. Bridges with the same damageability class, located at different places within the network will behave differently under the same earthquake scenario, even if the intensity measure is the same, because of their different axis orientation and angle of seismic incidence. Therefore the spatial distribution properties of the network are taken into account when performing SRA. The development of a new software was necessary for the application of these new fragility curves to the SRA of highway transportation networks.

WIND AND SEISMIC EFFECTS

WIND AND SEISMIC EFFECTS
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1033944335
ISBN-13 : 9781033944332
Rating : 4/5 (35 Downloads)

Synopsis WIND AND SEISMIC EFFECTS by : H. S. LEW

Seismic Vulnerability Assessment of Bridges for Retrofitting and New Design

Seismic Vulnerability Assessment of Bridges for Retrofitting and New Design
Author :
Publisher :
Total Pages : 96
Release :
ISBN-10 : OCLC:1032281305
ISBN-13 :
Rating : 4/5 (05 Downloads)

Synopsis Seismic Vulnerability Assessment of Bridges for Retrofitting and New Design by : Pedram Farokh

Many bridges in North Eastern region of U.S. were designed prior to the adoption of the AASHTO LRFD Guide Specifications for seismic design and may be vulnerable to damage during an earthquake event. This study evaluates the seismic vulnerabilities of those bridges and the structural factors that could affect their performance during a seismic event. The effects of load demands and age deteriorations were also studied. Aging of certain bridge components such as bearings, columns, and bent caps can affect the capacity and demands of these components and accordingly might affect the global behavior and capacity of a bridge during an earthquake event. The concept of fragility curves was studied as a potential tool for evaluating the seismic performance of new bridges, existing bridges and retrofitted bridges for various bridge types subjected to different peak ground acceleration levels. Fragility curves represent the probability of a structure to experience damage levels higher than specific damage state at different peak ground acceleration. Possible retrofit measures for various bridge components were reviewed, and analyzed for their effectiveness. These include superstructure restrainers, stoppers, shear keys, isolation bearings, bent cap strengthening and column jacketing. Existing research shows that the concept of fragility curves can be used to identify bridge vulnerability and level of damage. They can also be used to identify performance and level of damage of various retrofit measures. The effect of aging of certain components such as stiffening and locking of bearings and corrosion of confining steel in columns need to be included when evaluating bridge load demands and capacities. Different types of concrete bridges (typical in North Eastern United States) were analyzed using elastic response spectrum and nonlinear push-over analysis for low, medium-to-high, and high seismicity levels. The effects of pier configuration, continuity between the superstructure and the substructure, and the number of spans were investigated. Analysis results showed that in the longitudinal direction, the displacement demand increased for multi-column bents compared to single-column bents. However, the overall D/C ratio dropped in both transverse and longitudinal directions. The results also showed that in the longitudinal direction the benefit of having multi-column bent over single-column bents in integral bridges is dependent on the seismicity levels. The D/C (demand/capacity) ratio for single column bents in the longitudinal direction was much lower for integral (monolithic) bents compared to non-integral bents. In the transverse directions, the difference in the D/C ratio was not significant. For multi-column bents, the percent change by having integral bents over non-integral bents was dependent on the seismicity levels. For high seismicity zones, the benefits of having Integral bents becomes more significant. This investigation presents guidance on incorporating the effects of aging and retrofitting in the finite element modeling of bridges subjected to various levels of earthquake ground motions.

Seismic Design and Retrofit of Bridges

Seismic Design and Retrofit of Bridges
Author :
Publisher : John Wiley & Sons
Total Pages : 704
Release :
ISBN-10 : 047157998X
ISBN-13 : 9780471579984
Rating : 4/5 (8X Downloads)

Synopsis Seismic Design and Retrofit of Bridges by : M. J. N. Priestley

Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges

Corrosion of Steel in Concrete

Corrosion of Steel in Concrete
Author :
Publisher : John Wiley & Sons
Total Pages : 389
Release :
ISBN-10 : 9783527651719
ISBN-13 : 3527651713
Rating : 4/5 (19 Downloads)

Synopsis Corrosion of Steel in Concrete by : Luca Bertolini

Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.

Proceedings of Italian Concrete Conference 2022

Proceedings of Italian Concrete Conference 2022
Author :
Publisher : Springer Nature
Total Pages : 731
Release :
ISBN-10 : 9783031431029
ISBN-13 : 3031431022
Rating : 4/5 (29 Downloads)

Synopsis Proceedings of Italian Concrete Conference 2022 by : Maria Antonietta Aiello

This book gathers the best peer-reviewed papers presented at the Italian Concrete Conference, held in Naples, Italy, on October 12-15, 2022. The conference topics encompass the aspects of design, execution, rehabilitation, and control of concrete structures, with particular reference to theory and modeling, applications and realizations, materials and investigations, technology, and construction techniques. The contributions amply demonstrate that today’s structural concrete applications concern not only new constructions, but more and more rehabilitation, conservation, strengthening, and seismic upgrading of existing premises, and that requirements cover new aspects within the frame of sustainability, including environmental friendliness, durability, adaptability, and reuse of works and/or materials. As such, the book represents an invaluable, up-to-the-minute tool, providing an essential overview of structural concrete, as well as all new materials with cementitious matrices.