Performance-based Seismic Bridge Design

Performance-based Seismic Bridge Design
Author :
Publisher : Transportation Research Board
Total Pages : 138
Release :
ISBN-10 : 9780309223805
ISBN-13 : 0309223806
Rating : 4/5 (05 Downloads)

Synopsis Performance-based Seismic Bridge Design by : M. Lee Marsh

"TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 440, Performance-Based Seismic Bridge Design (PBSD) summarizes the current state of knowledge and practice for PBSD. PBSD is the process that links decision making for facility design with seismic input, facility response, and potential facility damage. The goal of PBSD is to provide decision makers and stakeholders with data that will enable them to allocate resources for construction based on levels of desired seismic performance"--Publisher's description.

Seismic Fragility Assessment of Highway Bridges

Seismic Fragility Assessment of Highway Bridges
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:948510278
ISBN-13 :
Rating : 4/5 (78 Downloads)

Synopsis Seismic Fragility Assessment of Highway Bridges by : Seyyed Nima Mahmoudi

"Fragility curves are useful tools for reliability evaluation of structures as well as for identifying the most vulnerable components. This study focuses on the seismic fragility analysis of highway bridges. Two main approaches are used for this purpose: component-based and system-based fragility analyses. The seismic vulnerability of two existing bridges located in Montreal are assessed as case studies.The main goal of this study is to develop reliable seismic fragility curves for highway bridge structures considering all significant uncertainties involved. Uncertainties include those associated with modelling structural behavior, seismic inputs and definition of component capacities. The procedures are implemented for the fragility assessment of two existing bridges as case studies. For this purpose, deterioration due to corrosion of reinforcing steel and its effects on structural behavior are included, as well as validation of the Finite Element Model using dynamic properties obtained from ambient noise measurements. Proposed methods for the selection of appropriate set of ground motion records, the type of model analysis and probabilistic modeling of component capacities are presented and illustrated for the two case studies.Two stochastic methods are proposed for validating the Finite Element Model of a bridge. The first method is based on classical hypothesis testing procedures while the second uses a Bayesian updating approach. The stochastic methods are also used to update the input parameters, detect probable major damage in the bridges and determine the confidence interval on model responses as a function of laboratory test data and field observations.In order to limit the uncertainties involved in seismic inputs, a state-of-the-art ground motion record selection procedure based on Conditional Mean Spectrum (CMS) is used. Incremental Dynamic Analysis (IDA) is performed to evaluate the record to record variability in seismic responses and to capture the nonlinearity in structural component behaviors.The first part of the thesis describes the application of component-based fragility analysis for the seismic vulnerability assessment of highway bridge structures. IDA is performed on the validated Finite Element model of the structure using an appropriate set of ground motion records. The results are used for estimating the relationships between ground motion intensity measures and component demands. A Joint Probabilistic Seismic Demand Model (JPSDM) is fitted to the results in order to develop component and system fragility curves of the structure.Since the component based fragility analysis of complex structures comprising a large number of components requires enormous computational efforts, in the second part of this study, a system-based approach for developing seismic system fragility curves is proposed which uses Support Vector Machines (SVM). SVM is a state-of-the-art machine learning technique which is used to discover patterns in highly dimensional and complex data sets. In this application, SVM is used to determine the relationship between ground motion intensity measures and peak structural responses. Seismic fragility curves are developed using Probabilistic SVM (PSVM). Finally, the efficiency of the proposed PSVM method for its application to vector-valued ground motion Intensity Measures (IM) as well as traditional single-valued IM are investigated." --

Earthquake-Resistant Structures

Earthquake-Resistant Structures
Author :
Publisher : Butterworth-Heinemann
Total Pages : 437
Release :
ISBN-10 : 9780080949444
ISBN-13 : 0080949444
Rating : 4/5 (44 Downloads)

Synopsis Earthquake-Resistant Structures by : Mohiuddin Ali Khan

Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by them. These disasters have created a new awareness about the disaster preparedness and mitigation. Before a building, utility system, or transportation structure is built, engineers spend a great deal of time analyzing those structures to make sure they will perform reliably under seismic and other loads. The purpose of this book is to provide structural engineers with tools and information to improve current building and bridge design and construction practices and enhance their sustainability during and after seismic events. In this book, Khan explains the latest theory, design applications and Code Provisions. Earthquake-Resistant Structures features seismic design and retrofitting techniques for low and high raise buildings, single and multi-span bridges, dams and nuclear facilities. The author also compares and contrasts various seismic resistant techniques in USA, Russia, Japan, Turkey, India, China, New Zealand, and Pakistan. - Written by a world renowned author and educator - Seismic design and retrofitting techniques for all structures - Tools improve current building and bridge designs - Latest methods for building earthquake-resistant structures - Combines physical and geophysical science with structural engineering

Guide Specifications for Seismic Isolation Design

Guide Specifications for Seismic Isolation Design
Author :
Publisher : AASHTO
Total Pages : 63
Release :
ISBN-10 : 9781560514565
ISBN-13 : 1560514566
Rating : 4/5 (65 Downloads)

Synopsis Guide Specifications for Seismic Isolation Design by :

This edition is based on the work of NCHRP project 20-7, task 262 and updates the 2nd (1999) edition -- P. ix.

Technical Report

Technical Report
Author :
Publisher :
Total Pages : 346
Release :
ISBN-10 : CORNELL:31924090462403
ISBN-13 :
Rating : 4/5 (03 Downloads)

Synopsis Technical Report by :