Fractional Partial Differential Equations And Their Numerical Solutions
Download Fractional Partial Differential Equations And Their Numerical Solutions full books in PDF, epub, and Kindle. Read online free Fractional Partial Differential Equations And Their Numerical Solutions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Boling Guo |
Publisher |
: World Scientific |
Total Pages |
: 347 |
Release |
: 2015-03-09 |
ISBN-10 |
: 9789814667067 |
ISBN-13 |
: 9814667064 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Fractional Partial Differential Equations And Their Numerical Solutions by : Boling Guo
This book aims to introduce some new trends and results on the study of the fractional differential equations, and to provide a good understanding of this field to beginners who are interested in this field, which is the authors' beautiful hope.This book describes theoretical and numerical aspects of the fractional partial differential equations, including the authors' researches in this field, such as the fractional Nonlinear Schrödinger equations, fractional Landau-Lifshitz equations and fractional Ginzburg-Landau equations. It also covers enough fundamental knowledge on the fractional derivatives and fractional integrals, and enough background of the fractional PDEs.
Author |
: Igor Podlubny |
Publisher |
: Elsevier |
Total Pages |
: 366 |
Release |
: 1998-10-27 |
ISBN-10 |
: 9780080531984 |
ISBN-13 |
: 0080531989 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Fractional Differential Equations by : Igor Podlubny
This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives
Author |
: Varsha Daftardar-Gejji |
Publisher |
: Springer |
Total Pages |
: 187 |
Release |
: 2019-08-10 |
ISBN-10 |
: 9789811392276 |
ISBN-13 |
: 9811392277 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Fractional Calculus and Fractional Differential Equations by : Varsha Daftardar-Gejji
This book provides a broad overview of the latest developments in fractional calculus and fractional differential equations (FDEs) with an aim to motivate the readers to venture into these areas. It also presents original research describing the fractional operators of variable order, fractional-order delay differential equations, chaos and related phenomena in detail. Selected results on the stability of solutions of nonlinear dynamical systems of the non-commensurate fractional order have also been included. Furthermore, artificial neural network and fractional differential equations are elaborated on; and new transform methods (for example, Sumudu methods) and how they can be employed to solve fractional partial differential equations are discussed. The book covers the latest research on a variety of topics, including: comparison of various numerical methods for solving FDEs, the Adomian decomposition method and its applications to fractional versions of the classical Poisson processes, variable-order fractional operators, fractional variational principles, fractional delay differential equations, fractional-order dynamical systems and stability analysis, inequalities and comparison theorems in FDEs, artificial neural network approximation for fractional operators, and new transform methods for solving partial FDEs. Given its scope and level of detail, the book will be an invaluable asset for researchers working in these areas.
Author |
: Kai Diethelm |
Publisher |
: Springer |
Total Pages |
: 251 |
Release |
: 2010-08-18 |
ISBN-10 |
: 9783642145742 |
ISBN-13 |
: 3642145744 |
Rating |
: 4/5 (42 Downloads) |
Synopsis The Analysis of Fractional Differential Equations by : Kai Diethelm
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Author |
: G. Evans |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 299 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781447103776 |
ISBN-13 |
: 1447103777 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Numerical Methods for Partial Differential Equations by : G. Evans
The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. James Clerk Maxwell, for example, put electricity and magnetism into a unified theory by establishing Maxwell's equations for electromagnetic theory, which gave solutions for prob lems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechanical processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forecasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.
Author |
: Claes Johnson |
Publisher |
: Courier Corporation |
Total Pages |
: 290 |
Release |
: 2012-05-23 |
ISBN-10 |
: 9780486131597 |
ISBN-13 |
: 0486131599 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Numerical Solution of Partial Differential Equations by the Finite Element Method by : Claes Johnson
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Author |
: Dumitru Baleanu |
Publisher |
: World Scientific |
Total Pages |
: 426 |
Release |
: 2012 |
ISBN-10 |
: 9789814355209 |
ISBN-13 |
: 9814355208 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Fractional Calculus by : Dumitru Baleanu
This title will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods.
Author |
: Varsha Daftardar-Gejji |
Publisher |
: ALPHA SCIENCE INTERNATIONAL LIMITED |
Total Pages |
: 232 |
Release |
: 2013-07-26 |
ISBN-10 |
: 9788184874785 |
ISBN-13 |
: 8184874782 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Fractional Calculus by : Varsha Daftardar-Gejji
FRACTIONAL CALCULUS: Theory and Applications deals with differentiation and integration of arbitrary order. The origin of this subject can be traced back to the end of seventeenth century, the time when Newton and Leibniz developed foundations of differential and integral calculus. Nonetheless, utility and applicability of FC to various branches of science and engineering have been realized only in last few decades. Recent years have witnessed tremendous upsurge in research activities related to the applications of FC in modeling of real-world systems. Unlike the derivatives of integral order, the non-local nature of fractional derivatives correctly models many natural phenomena containing long memory and give more accurate description than their integer counterparts.The present book comprises of contributions from academicians and leading researchers and gives a panoramic overview of various aspects of this subject: Introduction to Fractional Calculus Fractional Differential Equations Fractional Ordered Dynamical Systems Fractional Operators on Fractals Local Fractional Derivatives Fractional Control Systems Fractional Operators and Statistical Distributions Applications to Engineering
Author |
: Anatoly Kochubei |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 528 |
Release |
: 2019-02-19 |
ISBN-10 |
: 9783110571660 |
ISBN-13 |
: 3110571668 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Fractional Differential Equations by : Anatoly Kochubei
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.
Author |
: Shijun Liao |
Publisher |
: CRC Press |
Total Pages |
: 335 |
Release |
: 2003-10-27 |
ISBN-10 |
: 9781135438296 |
ISBN-13 |
: 1135438293 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Beyond Perturbation by : Shijun Liao
Solving nonlinear problems is inherently difficult, and the stronger the nonlinearity, the more intractable solutions become. Analytic approximations often break down as nonlinearity becomes strong, and even perturbation approximations are valid only for problems with weak nonlinearity. This book introduces a powerful new analytic method for nonlinear problems-homotopy analysis-that remains valid even with strong nonlinearity. In Part I, the author starts with a very simple example, then presents the basic ideas, detailed procedures, and the advantages (and limitations) of homotopy analysis. Part II illustrates the application of homotopy analysis to many interesting nonlinear problems. These range from simple bifurcations of a nonlinear boundary-value problem to the Thomas-Fermi atom model, Volterra's population model, Von Karman swirling viscous flow, and nonlinear progressive waves in deep water. Although the homotopy analysis method has been verified in a number of prestigious journals, it has yet to be fully detailed in book form. Written by a pioneer in its development, Beyond Pertubation: Introduction to the Homotopy Analysis Method is your first opportunity to explore the details of this valuable new approach, add it to your analytic toolbox, and perhaps make contributions to some of the questions that remain open.