Foundations of Rule Learning

Foundations of Rule Learning
Author :
Publisher : Springer Science & Business Media
Total Pages : 345
Release :
ISBN-10 : 9783540751977
ISBN-13 : 3540751971
Rating : 4/5 (77 Downloads)

Synopsis Foundations of Rule Learning by : Johannes Fürnkranz

Rules – the clearest, most explored and best understood form of knowledge representation – are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning. The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data.

Foundations of Data Science

Foundations of Data Science
Author :
Publisher : Cambridge University Press
Total Pages : 433
Release :
ISBN-10 : 9781108617369
ISBN-13 : 1108617360
Rating : 4/5 (69 Downloads)

Synopsis Foundations of Data Science by : Avrim Blum

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition
Author :
Publisher : MIT Press
Total Pages : 505
Release :
ISBN-10 : 9780262351362
ISBN-13 : 0262351366
Rating : 4/5 (62 Downloads)

Synopsis Foundations of Machine Learning, second edition by : Mehryar Mohri

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

Logical Foundations for Rule-Based Systems

Logical Foundations for Rule-Based Systems
Author :
Publisher : Springer
Total Pages : 312
Release :
ISBN-10 : 9783540324461
ISBN-13 : 3540324461
Rating : 4/5 (61 Downloads)

Synopsis Logical Foundations for Rule-Based Systems by : Antoni Ligeza

Thinking in terms of facts and rules is perhaps one of the most common ways of approaching problem de?nition and problem solving both in everyday life and under more formal circumstances. The best known set of rules, the Ten Commandments have been accompanying us since the times of Moses; the Decalogue proved to be simple but powerful, concise and universal. It is logically consistent and complete. There are also many other attempts to impose rule-based regulations in almost all areas of life, including professional work, education, medical services, taxes, etc. Some most typical examples may include various codes (e.g. legal or tra?c code), regulations (especially military ones), and many systems of customary or informal rules. The universal nature of rule-based formulation of behavior or inference principles follows from the concept of rules being a simple and intuitive yet powerful concept of very high expressive power. Moreover, rules as such encode in fact functional aspects of behavior and can be used for modeling numerous phenomena.

Machine Learning Refined

Machine Learning Refined
Author :
Publisher : Cambridge University Press
Total Pages : 597
Release :
ISBN-10 : 9781108480727
ISBN-13 : 1108480721
Rating : 4/5 (27 Downloads)

Synopsis Machine Learning Refined by : Jeremy Watt

An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Interpretable Machine Learning

Interpretable Machine Learning
Author :
Publisher : Lulu.com
Total Pages : 320
Release :
ISBN-10 : 9780244768522
ISBN-13 : 0244768528
Rating : 4/5 (22 Downloads)

Synopsis Interpretable Machine Learning by : Christoph Molnar

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Uncovering the Logic of English: A Common-Sense Solution to America's Literacy Crisis

Uncovering the Logic of English: A Common-Sense Solution to America's Literacy Crisis
Author :
Publisher : Logic of English, Inc
Total Pages : 204
Release :
ISBN-10 : 9781936706075
ISBN-13 : 1936706075
Rating : 4/5 (75 Downloads)

Synopsis Uncovering the Logic of English: A Common-Sense Solution to America's Literacy Crisis by : Denise Eide

"English is so illogical!" It is generally believed that English is a language of exceptions. For many, learning to spell and read is frustrating. For some, it is impossible... especially for the 29% of Americans who are functionally illiterate. But what if the problem is not the language itself, but the rules we were taught? What if we could see the complexity of English as a powerful tool rather than a hindrance? --Denise Eide Uncovering the Logic of English challenges the notion that English is illogical by systematically explaining English spelling and answering questions like "Why is there a silent final E in have, large, and house?" and "Why is discussion spelled with -sion rather than -tion?" With easy-to-read examples and anecdotes, this book describes: - the phonograms and spelling rules which explain 98% of English words - how English words are formed and how this knowledge can revolutionize vocabulary development - how understanding the reasons behind English spelling prevents students from needing to guess The author's inspiring commentary makes a compelling case that understanding the logic of English could transform literacy education and help solve America's literacy crisis. Thorough and filled with the latest linguistic and reading research, Uncovering the Logic of English demonstrates why this systematic approach should be as foundational to our education as 1+1=2.

Unsupervised Learning

Unsupervised Learning
Author :
Publisher : MIT Press
Total Pages : 420
Release :
ISBN-10 : 026258168X
ISBN-13 : 9780262581684
Rating : 4/5 (8X Downloads)

Synopsis Unsupervised Learning by : Geoffrey Hinton

Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. This volume of Foundations of Neural Computation, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.

Rules of Play

Rules of Play
Author :
Publisher : MIT Press
Total Pages : 680
Release :
ISBN-10 : 0262240459
ISBN-13 : 9780262240451
Rating : 4/5 (59 Downloads)

Synopsis Rules of Play by : Katie Salen Tekinbas

An impassioned look at games and game design that offers the most ambitious framework for understanding them to date. As pop culture, games are as important as film or television—but game design has yet to develop a theoretical framework or critical vocabulary. In Rules of Play Katie Salen and Eric Zimmerman present a much-needed primer for this emerging field. They offer a unified model for looking at all kinds of games, from board games and sports to computer and video games. As active participants in game culture, the authors have written Rules of Play as a catalyst for innovation, filled with new concepts, strategies, and methodologies for creating and understanding games. Building an aesthetics of interactive systems, Salen and Zimmerman define core concepts like "play," "design," and "interactivity." They look at games through a series of eighteen "game design schemas," or conceptual frameworks, including games as systems of emergence and information, as contexts for social play, as a storytelling medium, and as sites of cultural resistance. Written for game scholars, game developers, and interactive designers, Rules of Play is a textbook, reference book, and theoretical guide. It is the first comprehensive attempt to establish a solid theoretical framework for the emerging discipline of game design.

Data Mining and Machine Learning

Data Mining and Machine Learning
Author :
Publisher : Cambridge University Press
Total Pages : 779
Release :
ISBN-10 : 9781108473989
ISBN-13 : 1108473989
Rating : 4/5 (89 Downloads)

Synopsis Data Mining and Machine Learning by : Mohammed J. Zaki

New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.