Forest Products Biotechnology
Download Forest Products Biotechnology full books in PDF, epub, and Kindle. Read online free Forest Products Biotechnology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Alan Bruce |
Publisher |
: CRC Press |
Total Pages |
: 337 |
Release |
: 2002-09-10 |
ISBN-10 |
: 9780203482971 |
ISBN-13 |
: 0203482972 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Forest Products Biotechnology by : Alan Bruce
Industries are developing radical, new biotechnology processes to expand and develop their range of products that originate from the world's forests. As a result of the growing understanding of the process involved, biotechnology is also helping reduce any adverse impact on the environment.; This book presents a review of specialist research directed towards efficient and environmentally sensitive use of forests. An introductory chapter explaining the structure and anatomy of wood is followed by a chapter-by-chapter review of the most current developments on individual topics associated with a wide range of forest products such as timber, trees, pulp and paper, drugs and valuable chemicals. In addition, chapters focus on the ways of resolving some of the environmental problems faced by these industries.
Author |
: Raymond Dobert |
Publisher |
: |
Total Pages |
: 64 |
Release |
: 1995 |
ISBN-10 |
: MINN:31951D011521492 |
ISBN-13 |
: |
Rating |
: 4/5 (92 Downloads) |
Synopsis Biotechnology, Forestry and Forest Products by : Raymond Dobert
Author |
: Lara Wiggert |
Publisher |
: |
Total Pages |
: 48 |
Release |
: 1993 |
ISBN-10 |
: UCR:31210008918359 |
ISBN-13 |
: |
Rating |
: 4/5 (59 Downloads) |
Synopsis Biotechnology, Forestry and Forest Products by : Lara Wiggert
Author |
: Robert D. Warmbrodt |
Publisher |
: |
Total Pages |
: 28 |
Release |
: 1991 |
ISBN-10 |
: MINN:31951003042463F |
ISBN-13 |
: |
Rating |
: 4/5 (3F Downloads) |
Synopsis Biotechnology, Forestry and Forest Products by : Robert D. Warmbrodt
Author |
: Isabel Allona |
Publisher |
: Frontiers Media SA |
Total Pages |
: 185 |
Release |
: 2019-11-27 |
ISBN-10 |
: 9782889631780 |
ISBN-13 |
: 2889631788 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Forest Genomics and Biotechnology by : Isabel Allona
This Research Topic addresses research in genomics and biotechnology to improve the growth and quality of forest trees for wood, pulp, biorefineries and carbon capture. Forests are the world’s greatest repository of terrestrial biomass and biodiversity. Forests serve critical ecological services, supporting the preservation of fauna and flora, and water resources. Planted forests also offer a renewable source of timber, for pulp and paper production, and the biorefinery. Despite their fundamental role for society, thousands of hectares of forests are lost annually due to deforestation, pests, pathogens and urban development. As a consequence, there is an increasing need to develop trees that are more productive under lower inputs, while understanding how they adapt to the environment and respond to biotic and abiotic stress. Forest genomics and biotechnology, disciplines that study the genetic composition of trees and the methods required to modify them, began over a quarter of a century ago with the development of the first genetic maps and establishment of early methods of genetic transformation. Since then, genomics and biotechnology have impacted all research areas of forestry. Genome analyses of tree populations have uncovered genes involved in adaptation and response to biotic and abiotic stress. Genes that regulate growth and development have been identified, and in many cases their mechanisms of action have been described. Genetic transformation is now widely used to understand the roles of genes and to develop germplasm that is more suitable for commercial tree plantations. However, in contrast to many annual crops that have benefited from centuries of domestication and extensive genomic and biotechnology research, in forestry the field is still in its infancy. Thus, tremendous opportunities remain unexplored. This Research Topic aims to briefly summarize recent findings, to discuss long-term goals and to think ahead about future developments and how this can be applied to improve growth and quality of forest trees.
Author |
: Verkerk, P.J., Hassegawa, M., Van Brusselen, J., Cramm, M., Chen, X., Imparato Maximo, Y., Koç, M., Lovri?, M., Tekle Tegegne, Y. |
Publisher |
: Food & Agriculture Org. |
Total Pages |
: 168 |
Release |
: 2021-11-08 |
ISBN-10 |
: 9789251351512 |
ISBN-13 |
: 9251351511 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Forest products in the global bioeconomy by : Verkerk, P.J., Hassegawa, M., Van Brusselen, J., Cramm, M., Chen, X., Imparato Maximo, Y., Koç, M., Lovri?, M., Tekle Tegegne, Y.
This report addresses the role of forest products in replacing fossil-based and GHG-intensive products. The overarching objective is to provide recommendations to strengthen the contribution of substitution by forest products to sustainable development. To that end, this report firstly provides an overview of the understanding of the bioeconomy and the role of forest products across the world. Secondly, we present examples of conventional and innovative forest products and describe their role in the bioeconomy. Thirdly, we present a review of the quantitative and qualitative understanding of the environmental impacts and benefits of substituting fossil fuel-based or -intensive products with forest-based products, and of the contribution of substitution to SDGs. Fourthly, we outline the current understanding of the future global demand and supply dynamics of forest products and the potential impact that increased substitution may have on these dynamics. Fifthly, we identify gaps in the global forest product value chain. Finally, it provides recommendations and conclusions, respectively.
Author |
: National Academies of Sciences, Engineering, and Medicine |
Publisher |
: National Academies Press |
Total Pages |
: 241 |
Release |
: 2019-04-01 |
ISBN-10 |
: 9780309482882 |
ISBN-13 |
: 0309482887 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Forest Health and Biotechnology by : National Academies of Sciences, Engineering, and Medicine
The American chestnut, whitebark pine, and several species of ash in the eastern United States are just a few of the North American tree species that have been functionally lost or are in jeopardy of being lost due to outbreaks of pathogens and insect pests. New pressures in this century are putting even more trees at risk. Expanded human mobility and global trade are providing pathways for the introduction of nonnative pests for which native tree species may lack resistance. At the same time, climate change is extending the geographic range of both native and nonnative pest species. Biotechnology has the potential to help mitigate threats to North American forests from insects and pathogens through the introduction of pest-resistant traits to forest trees. However, challenges remain: the genetic mechanisms that underlie trees' resistance to pests are poorly understood; the complexity of tree genomes makes incorporating genetic changes a slow and difficult task; and there is a lack of information on the effects of releasing new genotypes into the environment. Forest Health and Biotechnology examines the potential use of biotechnology for mitigating threats to forest tree health and identifies the ecological, economic, and social implications of deploying biotechnology in forests. This report also develops a research agenda to address knowledge gaps about the application of the technology.
Author |
: |
Publisher |
: Universitätsverlag Göttingen |
Total Pages |
: 201 |
Release |
: 2008 |
ISBN-10 |
: 9783940344212 |
ISBN-13 |
: 3940344214 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Review of Forests, Wood Products and Wood Biotechnology of Iran and Germany by :
Author |
: Ursula Kües |
Publisher |
: Universitätsverlag Göttingen |
Total Pages |
: 646 |
Release |
: 2007 |
ISBN-10 |
: 9783940344113 |
ISBN-13 |
: 3940344117 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Wood Production, Wood Technology, and Biotechnological Impacts by : Ursula Kües
In the year 2001, Prof. Dr. Ursula Kües was appointed at the Faculty of Forest Sciences and Forest Ecology of the Georg-August-University Göttingen to the chair Molecular Wood Biotechnology endowed by the Deutsche Bundesstiftung Umwelt (DBU). Her group studies higher fungi in basic and applied research. Research foci are on mushroom development and on fungal enzymes degrading wood and their applications in wood biotechnology. This book has been edited to thank the DBU for all support given to the chair Molecular Wood Biotechnology. Contributions to the book are from scientists from Göttingen recognised in different fields of forestry and wood science. Chapters presented by members of the group Molecular Wood Biotechnology introduces into their areas of research. The book is designed for interested students of wood biology and wood technology but will also address scientists in the field.
Author |
: Peter N. Mascia |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2012-11-06 |
ISBN-10 |
: 3642264999 |
ISBN-13 |
: 9783642264993 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Plant Biotechnology for Sustainable Production of Energy and Co-products by : Peter N. Mascia
This book is a collection of chapters concerning the use of biomass for the sustainable production of energy and chemicals–an important goal that will help decrease the production of greenhouse gases to help mitigate global warming, provide energy security in the face of dwindling petroleum reserves, improve balance of payment problems and spur local economic development. Clearly there are ways to save energy that need to be encouraged more. These include more use of energy sources such as, among others, manure in anaerobic digesters, waste wood in forests as fuel or feedstock for cellulosic ethanol, and conservation reserve program (CRP) land crops that are presently unused in the US. The use of biofuels is not new; Rudolf Diesel used peanut oil as fuel in the ?rst engines he developed (Chap. 8), and ethanol was used in the early 1900s in the US as automobile fuel [Songstad et al. (2009) Historical perspective of biofuels: learning from the past to rediscover the future. In Vitro Cell Dev Biol Plant 45:189–192). Brazil now produces enough sugar cane ethanol to make up about 50% of its transportation fuel needs (Chap. 4). The next big thing will be cellulosic ethanol. At present, there is also the use of Miscanthus x giganteous as fuel for power plants in the UK (Chap. 2), bagasse (sugar cane waste) to power sugar cane mills (Chap. 4), and waste wood and sawdust to power sawmills (Chap. 7).