Flexural-Torsional Buckling of Structures

Flexural-Torsional Buckling of Structures
Author :
Publisher : CRC Press
Total Pages : 394
Release :
ISBN-10 : 0849377633
ISBN-13 : 9780849377631
Rating : 4/5 (33 Downloads)

Synopsis Flexural-Torsional Buckling of Structures by : N. S. Trahair

Flexural-Torsional Buckling of Structures provides an up-to-date, comprehensive treatment of flexural-torsional buckling and demonstrates how to design against this mode of failure. The author first explains the fundamentals of this type of buckling behavior and then summarizes results that will be of use to designers and researchers in either equation or graphical form. This approach makes the book an ideal text/reference for students in structural engineering as well as for practicing civil engineers, structural engineers, and constructional steel researchers and designers. The book begins by introducing the modern development of the theory of flexural-torsional buckling through discussions on the general concepts of equilibrium, total potential, virtual work, and buckling. It then continues with in-depth coverage of hand methods for solving buckling problems, the analysis of flexural-torsional buckling using the finite element method, and the buckling of different types of structural elements and frames composed of various elastic materials. Other topics addressed include the design and inelastic buckling of steel members. The book's final chapter considers a collection of special topics.

Flexural-Torsional Buckling of Structures

Flexural-Torsional Buckling of Structures
Author :
Publisher : CRC Press
Total Pages : 352
Release :
ISBN-10 : 9781351448314
ISBN-13 : 1351448315
Rating : 4/5 (14 Downloads)

Synopsis Flexural-Torsional Buckling of Structures by : N. S. Trahair

Flexural-Torsional Buckling of Structures provides an up-to-date, comprehensive treatment of flexural-torsional buckling and demonstrates how to design against this mode of failure. The author first explains the fundamentals of this type of buckling behavior and then summarizes results that will be of use to designers and researchers in either equation or graphical form. This approach makes the book an ideal text/reference for students in structural engineering as well as for practicing civil engineers, structural engineers, and constructional steel researchers and designers. The book begins by introducing the modern development of the theory of flexural-torsional buckling through discussions on the general concepts of equilibrium, total potential, virtual work, and buckling. It then continues with in-depth coverage of hand methods for solving buckling problems, the analysis of flexural-torsional buckling using the finite element method, and the buckling of different types of structural elements and frames composed of various elastic materials. Other topics addressed include the design and inelastic buckling of steel members. The book's final chapter considers a collection of special topics.

Modern Trends in Research on Steel, Aluminium and Composite Structures

Modern Trends in Research on Steel, Aluminium and Composite Structures
Author :
Publisher : Routledge
Total Pages : 689
Release :
ISBN-10 : 9781000459524
ISBN-13 : 1000459527
Rating : 4/5 (24 Downloads)

Synopsis Modern Trends in Research on Steel, Aluminium and Composite Structures by : Marian A. Giżejowski

Modern Trends in Research on Steel, Aluminium and Composite Structures includes papers presented at the 14th International Conference on Metal Structures 2021 (ICMS 2021, Poznań, Poland, 16-18 June 2021). The 14th ICMS summarised a few years’ theoretical, numerical and experimental research on steel, aluminium and composite structures, and presented new concepts. This book contains six plenary lectures and all the individual papers presented during the Conference. Seven plenary lectures were presented at the Conference, including "Research developments on glass structures under extreme loads", Parhp3D – The parallel MPI/openMPI implementation of the 3D hp-adaptive FE code", "Design of beam-to-column steel-concrete composite joints: from Eurocodes and beyond", "Stainless steel structures – research, codification and practice", "Testing, modelling and design of bolted joints – effect of size, structural properties, integrity and robustness", "Design of hybrid beam-to-column joints between RHS tubular columns and I-section beams" and "Selected aspects of designing the cold-formed steel structures". The individual contributions delivered by authors covered a wide variety of topics: – Advanced analysis and direct methods of design, – Cold-formed elements and structures, – Composite structures, – Engineering structures, – Joints and connections, – Structural stability and integrity, – Structural steel, metallurgy, durability and behaviour in fire. Modern Trends in Research on Steel, Aluminium and Composite Structures is a useful reference source for academic researchers, graduate students as well as designers and fabricators.

Design of Steel Structures to Eurocodes

Design of Steel Structures to Eurocodes
Author :
Publisher : Springer
Total Pages : 627
Release :
ISBN-10 : 9783319954745
ISBN-13 : 3319954741
Rating : 4/5 (45 Downloads)

Synopsis Design of Steel Structures to Eurocodes by : Ioannis Vayas

This textbook describes the rules for the design of steel and composite building structures according to Eurocodes, covering the structure as a whole, as well as the design of individual structural components and connections. It addresses the following topics: the basis of design in the Eurocodes framework; the loads applied to building structures; the load combinations for the various limit states of design and the main steel properties and steel fabrication methods; the models and methods of structural analysis in combination with the structural imperfections and the cross-section classification according to compactness; the cross-section resistances when subjected to axial and shear forces, bending or torsional moments and to combinations of the above; component design and more specifically the design of components sensitive to instability phenomena, such as flexural, torsional and lateral-torsional buckling (a section is devoted to composite beams); the design of connections and joints executed by bolting or welding, including beam to column connections in frame structures; and alternative configurations to be considered during the conceptual design phase for various types of single or multi-storey buildings, and the design of crane supporting beams. In addition, the fabrication and erection procedures, as well as the related quality requirements and the quality control methods are extensively discussed (including the procedures for bolting, welding and surface protection). The book is supplemented by more than fifty numerical examples that explain in detail the appropriate procedures to deal with each particular problem in the design of steel structures in accordance with Eurocodes. The book is an ideal learning resource for students of structural engineering, as well as a valuable reference for practicing engineers who perform designs on basis of Eurocodes.

Exact Solutions for Buckling of Structural Members

Exact Solutions for Buckling of Structural Members
Author :
Publisher : CRC Press
Total Pages : 220
Release :
ISBN-10 : 9780203483534
ISBN-13 : 0203483537
Rating : 4/5 (34 Downloads)

Synopsis Exact Solutions for Buckling of Structural Members by : C.M. Wang

The study of buckling loads, which often hinges on numerical methods, is key in designing structural elements. But the need for analytical solutions in addition to numerical methods is what drove the creation of Exact Solutions for Buckling of Structural Members. It allows readers to assess the reliability and accuracy of solutions obtained by nume

Static and Dynamic Buckling of Thin-Walled Plate Structures

Static and Dynamic Buckling of Thin-Walled Plate Structures
Author :
Publisher : Springer Science & Business Media
Total Pages : 190
Release :
ISBN-10 : 9783319006543
ISBN-13 : 3319006541
Rating : 4/5 (43 Downloads)

Synopsis Static and Dynamic Buckling of Thin-Walled Plate Structures by : Tomasz Kubiak

This monograph deals with buckling and postbuckling behavior of thin plates and thin-walled structures with flat wall subjected to static and dynamic load. The investigations are carried out in elastic range. The basic assumption here is the thin plate theory. This method is used to determination the buckling load and postbuckling analysis of thin-walled structures subjected to static and dynamic load. The book introduces two methods for static and dynamic buckling investigation which allow for a wider understanding of the phenomenon. Two different methods also can allow uncoupling of the phenomena occurring at the same time and attempt to estimate their impact on the final result. A general mathematical model, adopted in proposed analytical-numerical method, enables the consideration of all types of stability loss i.e.local, global and interactive forms of buckling. The applied numerical-numerical method includes adjacent of walls, shear-lag phenomenon and a deplanation of cross-sections.

Stability of Structures

Stability of Structures
Author :
Publisher : Elsevier
Total Pages : 537
Release :
ISBN-10 : 9780123851239
ISBN-13 : 0123851238
Rating : 4/5 (39 Downloads)

Synopsis Stability of Structures by : Chai H Yoo

The current trend of building more streamlined structures has made stability analysis a subject of extreme importance. It is mostly a safety issue because Stability loss could result in an unimaginable catastrophe. Written by two authors with a combined 80 years of professional and academic experience, the objective of Stability of Structures: Principles and Applications is to provide engineers and architects with a firm grasp of the fundamentals and principles that are essential to performing effective stability analysts. Concise and readable, this guide presents stability analysis within the context of elementary nonlinear flexural analysis, providing a strong foundation for incorporating theory into everyday practice. The first chapter introduces the buckling of columns. It begins with the linear elastic theory and proceeds to include the effects of large deformations and inelastic behavior. In Chapter 2 various approximate methods are illustrated along with the fundamentals of energy methods. The chapter concludes by introducing several special topics, some advanced, that are useful in understanding the physical resistance mechanisms and consistent and rigorous mathematical analysis. Chapters 3 and 4 cover buckling of beam-columns. Chapter 5 presents torsion in structures in some detail, which is one of the least well understood subjects in the entire spectrum of structural mechanics. Strictly speaking, torsion itself does not belong to a topic in structural stability, but needs to be covered to some extent for a better understanding of buckling accompanied with torsional behavior. Chapters 6 and 7 consider stability of framed structures in conjunction with torsional behavior of structures. Chapters 8 to 10 consider buckling of plate elements, cylindrical shells, and general shells. Although the book is primarily devoted to analysis, rudimentary design aspects are discussed. - Balanced presentation for both theory and practice - Well-blended contents covering elementary to advanced topics - Detailed presentation of the development

Structural Stability of Steel

Structural Stability of Steel
Author :
Publisher : John Wiley & Sons
Total Pages : 386
Release :
ISBN-10 : 9780470037782
ISBN-13 : 0470037784
Rating : 4/5 (82 Downloads)

Synopsis Structural Stability of Steel by : Theodore V. Galambos

Practical guide to structural stability theory for the design of safe steel structures Not only does this book provide readers with a solid foundation in structural stability theory, it also offers them a practical, working knowledge of how this theory translates into design specifications for safe steel structures. Structural Stability of Steel features detailed discussions of the elastic and inelastic stability of steel columns, beams, beam-columns, and frames alongside numerous worked examples. For each type of structural member or system, the authors set forth recommended design rules with clear explanations of how they were derived. Following an introduction to the principles of stability theory, the book covers: * Stability of axially loaded planar elastic systems * Tangent-modulus, reduced-modulus, and maximum strength theories * Elastic and inelastic stability limits of planar beam-columns * Elastic and inelastic instability of planar frames * Out-of-plane, lateral-torsional buckling of beams, columns, and beam-columns The final two chapters focus on the application of stability theory to the practical design of steel structures, with special emphasis on examples based on the 2005 Specification for Structural Steel Buildings of the American Institute of Steel Construction. Problem sets at the end of each chapter enable readers to put their newfound knowledge into practice by solving actual instability problems. With its clear logical progression from theory to design implementation, this book is an ideal textbook for upper-level undergraduates and graduate students in structural engineering. Practicing engineers should also turn to this book for expert assistance in investigating and solving a myriad of stability problems.

Steel Structures

Steel Structures
Author :
Publisher : John Wiley & Sons
Total Pages : 553
Release :
ISBN-10 : 9783433601266
ISBN-13 : 3433601267
Rating : 4/5 (66 Downloads)

Synopsis Steel Structures by : Rolf Kindmann

This book presents the design of steel structures using finite element methods (FEM) according to the current state of the art in Germany and the rest of Europe. After a short introduction on the basics of the design, this book illustrates the FEM with a focus on internal forces, displacements, critical loads and modal shapes. Next to finite element procedures for linear calculations considering the stress states of normal force, biaxial bending and warping torsion, non-linear calculations and the stability cases of flexural buckling, lateral torsional buckling and plate buckling are concentrated on significantly. In this context, design procedures for stability according to the standard Eurocode 3 is introduced and discussed. In addition, important fundamental issues are covered, such as the determination of cross-section properties as well as the elastic and plastic cross-section resistance. Complementary, finite element procedures for cross sections are dealt with, which will have an increasing importance in future. This book has evolved within the teaching activities of the authors in the lecture Computer-oriented Design of Steel Structures on the Master?s Program Computational Engineering at the University of Bochum. It covers the total variety of demands needed to be discussed for the safe, economic and modern design of steel structures.

Structural Stability Theory and Practice

Structural Stability Theory and Practice
Author :
Publisher : John Wiley & Sons
Total Pages : 674
Release :
ISBN-10 : 9781119694496
ISBN-13 : 1119694493
Rating : 4/5 (96 Downloads)

Synopsis Structural Stability Theory and Practice by : Sukhvarsh Jerath

Discover the theory of structural stability and its applications in crucial areas in engineering Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shells combines necessary information on structural stability into a single, comprehensive resource suitable for practicing engineers and students alike. Written in both US and SI units, this invaluable guide is perfect for readers within and outside of the US. Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shell offers: Detailed and patiently developed mathematical derivations and thorough explanations Energy methods that are incorporated throughout the chapters Connections between theory, design specifications and solutions The latest codes and standards from the American Institute of Steel Construction (AISC), Canadian Standards Association (CSA), Australian Standards (SAA), Structural Stability Research Council (SSRC), and Eurocode 3 Solved and unsolved practice-oriented problems in every chapter, with a solutions manual for unsolved problems included for instructors Ideal for practicing professionals in civil, mechanical, and aerospace engineering, as well as upper-level undergraduates and graduate students in structural engineering courses, Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shell provides readers with detailed mathematical derivations along with thorough explanations and practical examples.